利用BERT优化改进多模型混合中文长文本分类

Yu Wang, He Huang, Yunni Xia
{"title":"利用BERT优化改进多模型混合中文长文本分类","authors":"Yu Wang, He Huang, Yunni Xia","doi":"10.1109/ICNSC55942.2022.10004130","DOIUrl":null,"url":null,"abstract":"Text classification is an almost unavoidable process in natural language processing and has a wide range of application scenarios in industry. Although many existing methods can achieve superior classification results, raising the effect of text classification not only poses a great challenge, but also provides a longitudinal study of technological improvement. Based on the pre-trained bidirectional encoder representations from transformer (BERT) model and in-depth research on deep learning, we propose a multi-model, mixed-Chinese classification model (MCCM) based on BERT (MCCM-BERT) to process Chinese text-classification tasks. The experimental results show that the proposed MCCM BERT model outperforms BERT in text classification tasks, especially in Chinese long text classification, with an accuracy improvement of up to 2.28%.","PeriodicalId":230499,"journal":{"name":"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Multi-model Hybrid Chinese Long-text Classification through BERT Optimisation\",\"authors\":\"Yu Wang, He Huang, Yunni Xia\",\"doi\":\"10.1109/ICNSC55942.2022.10004130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text classification is an almost unavoidable process in natural language processing and has a wide range of application scenarios in industry. Although many existing methods can achieve superior classification results, raising the effect of text classification not only poses a great challenge, but also provides a longitudinal study of technological improvement. Based on the pre-trained bidirectional encoder representations from transformer (BERT) model and in-depth research on deep learning, we propose a multi-model, mixed-Chinese classification model (MCCM) based on BERT (MCCM-BERT) to process Chinese text-classification tasks. The experimental results show that the proposed MCCM BERT model outperforms BERT in text classification tasks, especially in Chinese long text classification, with an accuracy improvement of up to 2.28%.\",\"PeriodicalId\":230499,\"journal\":{\"name\":\"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNSC55942.2022.10004130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC55942.2022.10004130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

文本分类是自然语言处理中几乎不可避免的一个过程,在工业中有着广泛的应用场景。虽然现有的许多方法都能取得优异的分类效果,但提高文本分类的效果不仅是一个巨大的挑战,而且提供了一个技术改进的纵向研究。基于预训练的双向编码器表示(BERT)模型和对深度学习的深入研究,提出了一种基于BERT的多模型混合中文分类模型(MCCM-BERT)来处理中文文本分类任务。实验结果表明,本文提出的MCCM BERT模型在文本分类任务中优于BERT,特别是在中文长文本分类中,准确率提高了2.28%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Multi-model Hybrid Chinese Long-text Classification through BERT Optimisation
Text classification is an almost unavoidable process in natural language processing and has a wide range of application scenarios in industry. Although many existing methods can achieve superior classification results, raising the effect of text classification not only poses a great challenge, but also provides a longitudinal study of technological improvement. Based on the pre-trained bidirectional encoder representations from transformer (BERT) model and in-depth research on deep learning, we propose a multi-model, mixed-Chinese classification model (MCCM) based on BERT (MCCM-BERT) to process Chinese text-classification tasks. The experimental results show that the proposed MCCM BERT model outperforms BERT in text classification tasks, especially in Chinese long text classification, with an accuracy improvement of up to 2.28%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信