放松控制——控制异质蜂群的混合方法

L. Esterle, David W. King
{"title":"放松控制——控制异质蜂群的混合方法","authors":"L. Esterle, David W. King","doi":"10.1145/3502725","DOIUrl":null,"url":null,"abstract":"Large pervasive systems, deployed in dynamic environments, require flexible control mechanisms to meet the demands of chaotic state changes while accomplishing system goals. As centralized control approaches may falter in environments where centralized communication and knowledge may be impossible to implement, researchers have proposed decentralized control methods that leverage agent-driven, self-organizing behaviors, to achieve reliable, flexible systems. This article presents and compares the performance of three decentralized control approaches in the online multi-object k-assignment problem. In this domain, a set of sensors is tasked to detect and track an unknown and changing set of targets. Results show that a proposed hybrid approach that incorporates supervisory devices within the population while allowing semi-autonomous operations in non-supervisory devices produces a flexible and reliable system capable of both high detection and coverage rates.","PeriodicalId":377078,"journal":{"name":"ACM Transactions on Autonomous and Adaptive Systems (TAAS)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Loosening Control—A Hybrid Approach to Controlling Heterogeneous Swarms\",\"authors\":\"L. Esterle, David W. King\",\"doi\":\"10.1145/3502725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large pervasive systems, deployed in dynamic environments, require flexible control mechanisms to meet the demands of chaotic state changes while accomplishing system goals. As centralized control approaches may falter in environments where centralized communication and knowledge may be impossible to implement, researchers have proposed decentralized control methods that leverage agent-driven, self-organizing behaviors, to achieve reliable, flexible systems. This article presents and compares the performance of three decentralized control approaches in the online multi-object k-assignment problem. In this domain, a set of sensors is tasked to detect and track an unknown and changing set of targets. Results show that a proposed hybrid approach that incorporates supervisory devices within the population while allowing semi-autonomous operations in non-supervisory devices produces a flexible and reliable system capable of both high detection and coverage rates.\",\"PeriodicalId\":377078,\"journal\":{\"name\":\"ACM Transactions on Autonomous and Adaptive Systems (TAAS)\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Autonomous and Adaptive Systems (TAAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3502725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Autonomous and Adaptive Systems (TAAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3502725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

部署在动态环境中的大型普适系统,在实现系统目标的同时,需要灵活的控制机制来满足混沌状态变化的需求。由于集中控制方法在无法实现集中通信和知识的环境中可能会动摇,研究人员提出了分散控制方法,利用智能体驱动的自组织行为来实现可靠、灵活的系统。本文提出并比较了三种分散控制方法在在线多目标k分配问题中的性能。在这个领域,一组传感器的任务是检测和跟踪一组未知的和不断变化的目标。结果表明,提出的混合方法在人群中整合监控设备,同时允许在非监控设备中进行半自主操作,从而产生灵活可靠的系统,能够实现高检测和高覆盖率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Loosening Control—A Hybrid Approach to Controlling Heterogeneous Swarms
Large pervasive systems, deployed in dynamic environments, require flexible control mechanisms to meet the demands of chaotic state changes while accomplishing system goals. As centralized control approaches may falter in environments where centralized communication and knowledge may be impossible to implement, researchers have proposed decentralized control methods that leverage agent-driven, self-organizing behaviors, to achieve reliable, flexible systems. This article presents and compares the performance of three decentralized control approaches in the online multi-object k-assignment problem. In this domain, a set of sensors is tasked to detect and track an unknown and changing set of targets. Results show that a proposed hybrid approach that incorporates supervisory devices within the population while allowing semi-autonomous operations in non-supervisory devices produces a flexible and reliable system capable of both high detection and coverage rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信