通过数据增强训练深度代码注释生成模型

Xiaoqing Zhang, Yu Zhou, Tingting Han, Taolue Chen
{"title":"通过数据增强训练深度代码注释生成模型","authors":"Xiaoqing Zhang, Yu Zhou, Tingting Han, Taolue Chen","doi":"10.1145/3457913.3457937","DOIUrl":null,"url":null,"abstract":"With the development of deep neural networks (DNNs) and the publicly available source code repositories, deep code comment generation models have demonstrated reasonable performance on test datasets. However, it has been confirmed in computer vision (CV) and natural language processing (NLP) that DNNs are vulnerable to adversarial examples. In this paper, we investigate how to maintain the performance of the models against these perturbed samples. We propose a simple, but effective, method to improve the robustness by training the model via data augmentation. We conduct experiments to evaluate our approach on two mainstream sequence-sequence (seq2seq) architectures which are based on the LSTM and the Transformer with a large-scale publicly available dataset. The experimental results demonstrate that our method can efficiently improve the capability of different models to defend the perturbed samples.","PeriodicalId":194449,"journal":{"name":"Proceedings of the 12th Asia-Pacific Symposium on Internetware","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Training Deep Code Comment Generation Models via Data Augmentation\",\"authors\":\"Xiaoqing Zhang, Yu Zhou, Tingting Han, Taolue Chen\",\"doi\":\"10.1145/3457913.3457937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of deep neural networks (DNNs) and the publicly available source code repositories, deep code comment generation models have demonstrated reasonable performance on test datasets. However, it has been confirmed in computer vision (CV) and natural language processing (NLP) that DNNs are vulnerable to adversarial examples. In this paper, we investigate how to maintain the performance of the models against these perturbed samples. We propose a simple, but effective, method to improve the robustness by training the model via data augmentation. We conduct experiments to evaluate our approach on two mainstream sequence-sequence (seq2seq) architectures which are based on the LSTM and the Transformer with a large-scale publicly available dataset. The experimental results demonstrate that our method can efficiently improve the capability of different models to defend the perturbed samples.\",\"PeriodicalId\":194449,\"journal\":{\"name\":\"Proceedings of the 12th Asia-Pacific Symposium on Internetware\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th Asia-Pacific Symposium on Internetware\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3457913.3457937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th Asia-Pacific Symposium on Internetware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3457913.3457937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

随着深度神经网络(dnn)和公开源代码库的发展,深度代码注释生成模型已经在测试数据集上展示了合理的性能。然而,在计算机视觉(CV)和自然语言处理(NLP)中已经证实,dnn容易受到对抗性示例的影响。在本文中,我们研究了如何在这些扰动样本中保持模型的性能。我们提出了一种简单而有效的方法,通过数据增强训练模型来提高鲁棒性。我们在基于LSTM和Transformer的两种主流序列序列(seq2seq)架构上进行了实验,并使用大规模公开可用的数据集来评估我们的方法。实验结果表明,该方法可以有效地提高不同模型对扰动样本的防御能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Training Deep Code Comment Generation Models via Data Augmentation
With the development of deep neural networks (DNNs) and the publicly available source code repositories, deep code comment generation models have demonstrated reasonable performance on test datasets. However, it has been confirmed in computer vision (CV) and natural language processing (NLP) that DNNs are vulnerable to adversarial examples. In this paper, we investigate how to maintain the performance of the models against these perturbed samples. We propose a simple, but effective, method to improve the robustness by training the model via data augmentation. We conduct experiments to evaluate our approach on two mainstream sequence-sequence (seq2seq) architectures which are based on the LSTM and the Transformer with a large-scale publicly available dataset. The experimental results demonstrate that our method can efficiently improve the capability of different models to defend the perturbed samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信