{"title":"用特殊函数表示定积分的一种方法,并举例说明","authors":"Robert Reynolds, Allan Stauffer","doi":"10.12988/imf.2020.91272","DOIUrl":null,"url":null,"abstract":"We present a method using contour integration to derive definite integrals and their associated infinite sums which can be expressed as a special function. We give a proof of the basic equation and some examples of the method. The advantage of using special functions is their analytic continuation which widens the range of the parameters of the definite integral over which the formula is valid. We give as examples definite integrals of logarithmic functions times a trigonometric function. In various cases these generalizations evaluate to known mathematical constants such as Catalan's constant and $\\pi$.","PeriodicalId":107214,"journal":{"name":"International Mathematical Forum","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"81","resultStr":"{\"title\":\"A method for evaluating definite integrals in terms of special functions with examples\",\"authors\":\"Robert Reynolds, Allan Stauffer\",\"doi\":\"10.12988/imf.2020.91272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a method using contour integration to derive definite integrals and their associated infinite sums which can be expressed as a special function. We give a proof of the basic equation and some examples of the method. The advantage of using special functions is their analytic continuation which widens the range of the parameters of the definite integral over which the formula is valid. We give as examples definite integrals of logarithmic functions times a trigonometric function. In various cases these generalizations evaluate to known mathematical constants such as Catalan's constant and $\\\\pi$.\",\"PeriodicalId\":107214,\"journal\":{\"name\":\"International Mathematical Forum\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"81\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Mathematical Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12988/imf.2020.91272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematical Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/imf.2020.91272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A method for evaluating definite integrals in terms of special functions with examples
We present a method using contour integration to derive definite integrals and their associated infinite sums which can be expressed as a special function. We give a proof of the basic equation and some examples of the method. The advantage of using special functions is their analytic continuation which widens the range of the parameters of the definite integral over which the formula is valid. We give as examples definite integrals of logarithmic functions times a trigonometric function. In various cases these generalizations evaluate to known mathematical constants such as Catalan's constant and $\pi$.