用特殊函数表示定积分的一种方法,并举例说明

Robert Reynolds, Allan Stauffer
{"title":"用特殊函数表示定积分的一种方法,并举例说明","authors":"Robert Reynolds, Allan Stauffer","doi":"10.12988/imf.2020.91272","DOIUrl":null,"url":null,"abstract":"We present a method using contour integration to derive definite integrals and their associated infinite sums which can be expressed as a special function. We give a proof of the basic equation and some examples of the method. The advantage of using special functions is their analytic continuation which widens the range of the parameters of the definite integral over which the formula is valid. We give as examples definite integrals of logarithmic functions times a trigonometric function. In various cases these generalizations evaluate to known mathematical constants such as Catalan's constant and $\\pi$.","PeriodicalId":107214,"journal":{"name":"International Mathematical Forum","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"81","resultStr":"{\"title\":\"A method for evaluating definite integrals in terms of special functions with examples\",\"authors\":\"Robert Reynolds, Allan Stauffer\",\"doi\":\"10.12988/imf.2020.91272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a method using contour integration to derive definite integrals and their associated infinite sums which can be expressed as a special function. We give a proof of the basic equation and some examples of the method. The advantage of using special functions is their analytic continuation which widens the range of the parameters of the definite integral over which the formula is valid. We give as examples definite integrals of logarithmic functions times a trigonometric function. In various cases these generalizations evaluate to known mathematical constants such as Catalan's constant and $\\\\pi$.\",\"PeriodicalId\":107214,\"journal\":{\"name\":\"International Mathematical Forum\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"81\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Mathematical Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12988/imf.2020.91272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematical Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/imf.2020.91272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 81

摘要

本文提出了一种利用轮廓积分导出定积分及其无限和的方法,这些定积分及其无限和可表示为一个特殊函数。给出了基本方程的证明,并给出了该方法的一些实例。使用特殊函数的优点是它们的解析延拓扩大了公式有效的定积分的参数范围。我们给出了对数函数乘以三角函数的定积分的例子。在不同的情况下,这些泛化可以计算为已知的数学常数,如Catalan常数和$\pi$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A method for evaluating definite integrals in terms of special functions with examples
We present a method using contour integration to derive definite integrals and their associated infinite sums which can be expressed as a special function. We give a proof of the basic equation and some examples of the method. The advantage of using special functions is their analytic continuation which widens the range of the parameters of the definite integral over which the formula is valid. We give as examples definite integrals of logarithmic functions times a trigonometric function. In various cases these generalizations evaluate to known mathematical constants such as Catalan's constant and $\pi$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信