一种新的运动车辆分类分割技术

Chunrui Zhang, M. Siyal
{"title":"一种新的运动车辆分类分割技术","authors":"Chunrui Zhang, M. Siyal","doi":"10.1109/VETECS.2000.851471","DOIUrl":null,"url":null,"abstract":"Image processing techniques are now considered flexible and practical for collecting and analyzing road traffic data. However, traditional image processing techniques based on grey scale images have not provided good results. In this paper we introduce a new technique, which is based on colour motion segmentation and split-merge segmentation approaches. First we use motion segmentation to determine the rough position of moving vehicles in a sequence of images. Then we apply the split-merge segmentation on the colour images. In this way we need not process the whole image, which saves computation time. Instead of determining the threshold value manually, which is the case in most vision-based traffic systems, we use an adaptive threshold to automatically choose the threshold value for split-merge method. We also classify the vehicle into 4 categories based on the feature of contour. The experiment results show that this method is quite promising.","PeriodicalId":318880,"journal":{"name":"VTC2000-Spring. 2000 IEEE 51st Vehicular Technology Conference Proceedings (Cat. No.00CH37026)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"A new segmentation technique for classification of moving vehicles\",\"authors\":\"Chunrui Zhang, M. Siyal\",\"doi\":\"10.1109/VETECS.2000.851471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image processing techniques are now considered flexible and practical for collecting and analyzing road traffic data. However, traditional image processing techniques based on grey scale images have not provided good results. In this paper we introduce a new technique, which is based on colour motion segmentation and split-merge segmentation approaches. First we use motion segmentation to determine the rough position of moving vehicles in a sequence of images. Then we apply the split-merge segmentation on the colour images. In this way we need not process the whole image, which saves computation time. Instead of determining the threshold value manually, which is the case in most vision-based traffic systems, we use an adaptive threshold to automatically choose the threshold value for split-merge method. We also classify the vehicle into 4 categories based on the feature of contour. The experiment results show that this method is quite promising.\",\"PeriodicalId\":318880,\"journal\":{\"name\":\"VTC2000-Spring. 2000 IEEE 51st Vehicular Technology Conference Proceedings (Cat. No.00CH37026)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VTC2000-Spring. 2000 IEEE 51st Vehicular Technology Conference Proceedings (Cat. No.00CH37026)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VETECS.2000.851471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VTC2000-Spring. 2000 IEEE 51st Vehicular Technology Conference Proceedings (Cat. No.00CH37026)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VETECS.2000.851471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

图像处理技术现在被认为是收集和分析道路交通数据的灵活和实用的技术。然而,传统的基于灰度图像的图像处理技术并没有取得很好的效果。本文介绍了一种基于颜色运动分割和分割合并分割的图像分割方法。首先,我们使用运动分割来确定运动车辆在一系列图像中的大致位置。然后对彩色图像进行分割合并分割。这样就不需要对整个图像进行处理,节省了计算时间。在大多数基于视觉的交通系统中,我们使用自适应阈值来自动选择分割合并方法的阈值,而不是手动确定阈值。我们还根据车辆的轮廓特征将其分为4类。实验结果表明,该方法是很有前途的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new segmentation technique for classification of moving vehicles
Image processing techniques are now considered flexible and practical for collecting and analyzing road traffic data. However, traditional image processing techniques based on grey scale images have not provided good results. In this paper we introduce a new technique, which is based on colour motion segmentation and split-merge segmentation approaches. First we use motion segmentation to determine the rough position of moving vehicles in a sequence of images. Then we apply the split-merge segmentation on the colour images. In this way we need not process the whole image, which saves computation time. Instead of determining the threshold value manually, which is the case in most vision-based traffic systems, we use an adaptive threshold to automatically choose the threshold value for split-merge method. We also classify the vehicle into 4 categories based on the feature of contour. The experiment results show that this method is quite promising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信