机器学习算法在自定位系统中的性能分析

H. Shamshad, Aleena Wahid, S. Z. Farooq, Yasir M. O. Abbas
{"title":"机器学习算法在自定位系统中的性能分析","authors":"H. Shamshad, Aleena Wahid, S. Z. Farooq, Yasir M. O. Abbas","doi":"10.1109/IBCAST.2019.8667116","DOIUrl":null,"url":null,"abstract":"The paper evaluates the performance of various machine learning techniques for localization systems. A case of outdoor localization based on multiple Received Signal Strength Indication (RSSI) values is considered and localization accuracy is determined for various SNR levels. Machine learning algorithms are deployed to make the system terrain aware by adapting RSSI values with the change in environment. Finally, this paper presents a performance comparison of different classifiers available in machine learning toolkit WEKA in selecting the most suitable radio frequency propagation models from a set of models. Our results show that terrain identification can be achieved using random forests and random committee classifiers within an error bound of 10 percent.","PeriodicalId":335329,"journal":{"name":"2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Analysis of Machine Learning Algorithms on Self-Localization Systems\",\"authors\":\"H. Shamshad, Aleena Wahid, S. Z. Farooq, Yasir M. O. Abbas\",\"doi\":\"10.1109/IBCAST.2019.8667116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper evaluates the performance of various machine learning techniques for localization systems. A case of outdoor localization based on multiple Received Signal Strength Indication (RSSI) values is considered and localization accuracy is determined for various SNR levels. Machine learning algorithms are deployed to make the system terrain aware by adapting RSSI values with the change in environment. Finally, this paper presents a performance comparison of different classifiers available in machine learning toolkit WEKA in selecting the most suitable radio frequency propagation models from a set of models. Our results show that terrain identification can be achieved using random forests and random committee classifiers within an error bound of 10 percent.\",\"PeriodicalId\":335329,\"journal\":{\"name\":\"2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IBCAST.2019.8667116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBCAST.2019.8667116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文评估了定位系统中各种机器学习技术的性能。考虑了一种基于多个接收信号强度指示(RSSI)值的室外定位情况,并确定了不同信噪比水平下的定位精度。部署机器学习算法,通过适应RSSI值与环境的变化,使系统的地形感知。最后,本文介绍了机器学习工具包WEKA中不同分类器在从一组模型中选择最合适的射频传播模型方面的性能比较。我们的结果表明,使用随机森林和随机委员会分类器可以在10%的误差范围内实现地形识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Analysis of Machine Learning Algorithms on Self-Localization Systems
The paper evaluates the performance of various machine learning techniques for localization systems. A case of outdoor localization based on multiple Received Signal Strength Indication (RSSI) values is considered and localization accuracy is determined for various SNR levels. Machine learning algorithms are deployed to make the system terrain aware by adapting RSSI values with the change in environment. Finally, this paper presents a performance comparison of different classifiers available in machine learning toolkit WEKA in selecting the most suitable radio frequency propagation models from a set of models. Our results show that terrain identification can be achieved using random forests and random committee classifiers within an error bound of 10 percent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信