易于重构的逻辑函数

Tsutomu Sasao
{"title":"易于重构的逻辑函数","authors":"Tsutomu Sasao","doi":"10.1109/ISMVL57333.2023.00014","DOIUrl":null,"url":null,"abstract":"This paper shows that sum-of-product expression (SOP) minimization produces the generalization ability. We show this in three steps. First, various classes SOPs are generated. Second, minterms of SOP are randomly selected to generate partially defined functions. And, third, from the partially defined functions, original functions are reconstructed by SOP minimization. We consider Achilles heel functions, majority functions, monotone increasing cascade functions, functions generated from random SOPs, and monotone increasing random SOPs. As for generalization ability, the presented method is compared with Naive Bayes, multi-level perceptron, support vector machine, JRIP, J48, and random forest.","PeriodicalId":419220,"journal":{"name":"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Easily Reconstructable Logic Functions\",\"authors\":\"Tsutomu Sasao\",\"doi\":\"10.1109/ISMVL57333.2023.00014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper shows that sum-of-product expression (SOP) minimization produces the generalization ability. We show this in three steps. First, various classes SOPs are generated. Second, minterms of SOP are randomly selected to generate partially defined functions. And, third, from the partially defined functions, original functions are reconstructed by SOP minimization. We consider Achilles heel functions, majority functions, monotone increasing cascade functions, functions generated from random SOPs, and monotone increasing random SOPs. As for generalization ability, the presented method is compared with Naive Bayes, multi-level perceptron, support vector machine, JRIP, J48, and random forest.\",\"PeriodicalId\":419220,\"journal\":{\"name\":\"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL57333.2023.00014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL57333.2023.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文证明了积和表达式(SOP)最小化产生泛化能力。我们分三步来演示。首先,生成各种类sop。其次,随机选取SOP的最小项生成部分定义函数。第三,从部分定义函数出发,采用SOP最小化法重构原始函数。我们考虑了阿基里斯之踵函数、多数函数、单调递增级联函数、随机标准操作程序生成的函数和单调递增随机标准操作程序。在泛化能力方面,将该方法与朴素贝叶斯、多级感知器、支持向量机、JRIP、J48和随机森林进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Easily Reconstructable Logic Functions
This paper shows that sum-of-product expression (SOP) minimization produces the generalization ability. We show this in three steps. First, various classes SOPs are generated. Second, minterms of SOP are randomly selected to generate partially defined functions. And, third, from the partially defined functions, original functions are reconstructed by SOP minimization. We consider Achilles heel functions, majority functions, monotone increasing cascade functions, functions generated from random SOPs, and monotone increasing random SOPs. As for generalization ability, the presented method is compared with Naive Bayes, multi-level perceptron, support vector machine, JRIP, J48, and random forest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信