{"title":"集中式传感器网络的非近视眼传感器调度","authors":"H. Shah, D. Morrell","doi":"10.1109/SAM.2008.4606871","DOIUrl":null,"url":null,"abstract":"When tracking a target in a sensor network with constrained resources, the target state estimate error can be significantly reduced using non-myopic sensor scheduling strategies. Integer non-linear programming has been used to obtain myopic sensor schedules (Chhetri et al., 2007). In this paper, we apply it to a non-myopic sensor scheduling scenario consisting of a network of acoustic sensors in a centralized sensor network; there is one fusion center that combines measurements to update target belief. We cast this problem, which we call the Central Node Scheduling problem, as an integer non-linear programming problem with the objective of minimizing the total predicted tracking error over an M step planning horizon subject to sensor usage and start-up cost constraints. Using Monte Carlo simulations, we show the benefits of this approach for the centralized sensor network.","PeriodicalId":422747,"journal":{"name":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-myopic sensor scheduling for a centralized sensor network\",\"authors\":\"H. Shah, D. Morrell\",\"doi\":\"10.1109/SAM.2008.4606871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When tracking a target in a sensor network with constrained resources, the target state estimate error can be significantly reduced using non-myopic sensor scheduling strategies. Integer non-linear programming has been used to obtain myopic sensor schedules (Chhetri et al., 2007). In this paper, we apply it to a non-myopic sensor scheduling scenario consisting of a network of acoustic sensors in a centralized sensor network; there is one fusion center that combines measurements to update target belief. We cast this problem, which we call the Central Node Scheduling problem, as an integer non-linear programming problem with the objective of minimizing the total predicted tracking error over an M step planning horizon subject to sensor usage and start-up cost constraints. Using Monte Carlo simulations, we show the benefits of this approach for the centralized sensor network.\",\"PeriodicalId\":422747,\"journal\":{\"name\":\"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2008.4606871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2008.4606871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-myopic sensor scheduling for a centralized sensor network
When tracking a target in a sensor network with constrained resources, the target state estimate error can be significantly reduced using non-myopic sensor scheduling strategies. Integer non-linear programming has been used to obtain myopic sensor schedules (Chhetri et al., 2007). In this paper, we apply it to a non-myopic sensor scheduling scenario consisting of a network of acoustic sensors in a centralized sensor network; there is one fusion center that combines measurements to update target belief. We cast this problem, which we call the Central Node Scheduling problem, as an integer non-linear programming problem with the objective of minimizing the total predicted tracking error over an M step planning horizon subject to sensor usage and start-up cost constraints. Using Monte Carlo simulations, we show the benefits of this approach for the centralized sensor network.