集中式传感器网络的非近视眼传感器调度

H. Shah, D. Morrell
{"title":"集中式传感器网络的非近视眼传感器调度","authors":"H. Shah, D. Morrell","doi":"10.1109/SAM.2008.4606871","DOIUrl":null,"url":null,"abstract":"When tracking a target in a sensor network with constrained resources, the target state estimate error can be significantly reduced using non-myopic sensor scheduling strategies. Integer non-linear programming has been used to obtain myopic sensor schedules (Chhetri et al., 2007). In this paper, we apply it to a non-myopic sensor scheduling scenario consisting of a network of acoustic sensors in a centralized sensor network; there is one fusion center that combines measurements to update target belief. We cast this problem, which we call the Central Node Scheduling problem, as an integer non-linear programming problem with the objective of minimizing the total predicted tracking error over an M step planning horizon subject to sensor usage and start-up cost constraints. Using Monte Carlo simulations, we show the benefits of this approach for the centralized sensor network.","PeriodicalId":422747,"journal":{"name":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-myopic sensor scheduling for a centralized sensor network\",\"authors\":\"H. Shah, D. Morrell\",\"doi\":\"10.1109/SAM.2008.4606871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When tracking a target in a sensor network with constrained resources, the target state estimate error can be significantly reduced using non-myopic sensor scheduling strategies. Integer non-linear programming has been used to obtain myopic sensor schedules (Chhetri et al., 2007). In this paper, we apply it to a non-myopic sensor scheduling scenario consisting of a network of acoustic sensors in a centralized sensor network; there is one fusion center that combines measurements to update target belief. We cast this problem, which we call the Central Node Scheduling problem, as an integer non-linear programming problem with the objective of minimizing the total predicted tracking error over an M step planning horizon subject to sensor usage and start-up cost constraints. Using Monte Carlo simulations, we show the benefits of this approach for the centralized sensor network.\",\"PeriodicalId\":422747,\"journal\":{\"name\":\"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2008.4606871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2008.4606871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在资源受限的传感器网络中跟踪目标时,采用非近视眼传感器调度策略可以显著降低目标状态估计误差。整数非线性规划已被用于获得近视传感器调度(Chhetri等人,2007)。在本文中,我们将其应用于由集中传感器网络中的声学传感器网络组成的非近视眼传感器调度场景;有一个融合中心结合测量来更新目标信念。我们把这个问题,我们称之为中心节点调度问题,作为一个整数非线性规划问题,其目标是在受传感器使用和启动成本约束的M步规划范围内最小化总预测跟踪误差。通过蒙特卡罗模拟,我们展示了这种方法对集中式传感器网络的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-myopic sensor scheduling for a centralized sensor network
When tracking a target in a sensor network with constrained resources, the target state estimate error can be significantly reduced using non-myopic sensor scheduling strategies. Integer non-linear programming has been used to obtain myopic sensor schedules (Chhetri et al., 2007). In this paper, we apply it to a non-myopic sensor scheduling scenario consisting of a network of acoustic sensors in a centralized sensor network; there is one fusion center that combines measurements to update target belief. We cast this problem, which we call the Central Node Scheduling problem, as an integer non-linear programming problem with the objective of minimizing the total predicted tracking error over an M step planning horizon subject to sensor usage and start-up cost constraints. Using Monte Carlo simulations, we show the benefits of this approach for the centralized sensor network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信