一种改进的基于模型的无纹理目标检测与姿态估计方法

Haoruo Zhang, Yang Cao, Xiaoxiao Zhu, M. Fujie, Q. Cao
{"title":"一种改进的基于模型的无纹理目标检测与姿态估计方法","authors":"Haoruo Zhang, Yang Cao, Xiaoxiao Zhu, M. Fujie, Q. Cao","doi":"10.1109/ARSO.2016.7736292","DOIUrl":null,"url":null,"abstract":"Detection and pose estimation of texture-less objects still faces several challenges such as foreground occlusions, background clutter, multi-instance objects, large scale and pose changes to name but a few. In this paper, we present an improved approach for model based detection and pose estimation of texture-less objects, LINEMOD [4], in order to improve the robustness of pose estimation with partial foreground occlusions. For template creation, we modify Gradient Response Maps and propose Gradient Orientation Maps, where Non-Maximum Suppression and Dual Threshold Algorithm are applied. And we adopt image pyramid searching method for fast template matching. Next, the approximate object pose associated with each detected template is used as a starting point for fine pose estimation with Iterative Closest Point algorithm. Thirdly, we improve the accuracy of fine pose estimation by using point cloud filter. Experimental results show that our approach is more robust to estimate the pose of texture-less objects with partial foreground occlusions.","PeriodicalId":403924,"journal":{"name":"2016 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An improved approach for model-based detection and pose estimation of texture-less objects\",\"authors\":\"Haoruo Zhang, Yang Cao, Xiaoxiao Zhu, M. Fujie, Q. Cao\",\"doi\":\"10.1109/ARSO.2016.7736292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detection and pose estimation of texture-less objects still faces several challenges such as foreground occlusions, background clutter, multi-instance objects, large scale and pose changes to name but a few. In this paper, we present an improved approach for model based detection and pose estimation of texture-less objects, LINEMOD [4], in order to improve the robustness of pose estimation with partial foreground occlusions. For template creation, we modify Gradient Response Maps and propose Gradient Orientation Maps, where Non-Maximum Suppression and Dual Threshold Algorithm are applied. And we adopt image pyramid searching method for fast template matching. Next, the approximate object pose associated with each detected template is used as a starting point for fine pose estimation with Iterative Closest Point algorithm. Thirdly, we improve the accuracy of fine pose estimation by using point cloud filter. Experimental results show that our approach is more robust to estimate the pose of texture-less objects with partial foreground occlusions.\",\"PeriodicalId\":403924,\"journal\":{\"name\":\"2016 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARSO.2016.7736292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARSO.2016.7736292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

无纹理目标的检测和姿态估计仍然面临着前景遮挡、背景杂波、多实例对象、大规模和姿态变化等挑战。在本文中,我们提出了一种改进的基于模型的无纹理目标检测和姿态估计方法LINEMOD[4],以提高部分前景遮挡下姿态估计的鲁棒性。对于模板的创建,我们修改了梯度响应映射,并提出了梯度方向映射,其中应用了非最大抑制和双阈值算法。采用图像金字塔搜索方法进行快速模板匹配。接下来,将与每个检测模板相关联的近似目标姿态作为迭代最近点算法精细姿态估计的起点。第三,利用点云滤波提高精细姿态估计的精度。实验结果表明,该方法对于具有部分前景遮挡的无纹理目标的姿态估计具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved approach for model-based detection and pose estimation of texture-less objects
Detection and pose estimation of texture-less objects still faces several challenges such as foreground occlusions, background clutter, multi-instance objects, large scale and pose changes to name but a few. In this paper, we present an improved approach for model based detection and pose estimation of texture-less objects, LINEMOD [4], in order to improve the robustness of pose estimation with partial foreground occlusions. For template creation, we modify Gradient Response Maps and propose Gradient Orientation Maps, where Non-Maximum Suppression and Dual Threshold Algorithm are applied. And we adopt image pyramid searching method for fast template matching. Next, the approximate object pose associated with each detected template is used as a starting point for fine pose estimation with Iterative Closest Point algorithm. Thirdly, we improve the accuracy of fine pose estimation by using point cloud filter. Experimental results show that our approach is more robust to estimate the pose of texture-less objects with partial foreground occlusions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信