使用非经典可模拟特征映射的HQC架构的量子机器学习

Syed Farhan Ahmad, Raghav Rawat, Minal Moharir
{"title":"使用非经典可模拟特征映射的HQC架构的量子机器学习","authors":"Syed Farhan Ahmad, Raghav Rawat, Minal Moharir","doi":"10.1109/ICCIKE51210.2021.9410753","DOIUrl":null,"url":null,"abstract":"Hybrid Quantum-Classical (HQC) Architectures are used in near-term NISQ Quantum Computers for solving Quantum Machine Learning problems. The quantum advantage comes into picture due to the exponential speedup offered over classical computing. One of the major challenges in implementing such algorithms is the choice of quantum embeddings and the use of a functionally correct quantum variational circuit. In this paper, we present an application of QSVM (Quantum Support Vector Machines) to predict if a person will require mental health treatment in the future the tech world using the dataset from OSMI Mental Health Tech Surveys. We achieve this with non-classically simulable feature maps and prove that NISQ HQC Architectures for Quantum Machine Learning can be used alternatively to create good performance models in near-term real-world applications.","PeriodicalId":254711,"journal":{"name":"2021 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Quantum Machine Learning with HQC Architectures using non-Classically Simulable Feature Maps\",\"authors\":\"Syed Farhan Ahmad, Raghav Rawat, Minal Moharir\",\"doi\":\"10.1109/ICCIKE51210.2021.9410753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hybrid Quantum-Classical (HQC) Architectures are used in near-term NISQ Quantum Computers for solving Quantum Machine Learning problems. The quantum advantage comes into picture due to the exponential speedup offered over classical computing. One of the major challenges in implementing such algorithms is the choice of quantum embeddings and the use of a functionally correct quantum variational circuit. In this paper, we present an application of QSVM (Quantum Support Vector Machines) to predict if a person will require mental health treatment in the future the tech world using the dataset from OSMI Mental Health Tech Surveys. We achieve this with non-classically simulable feature maps and prove that NISQ HQC Architectures for Quantum Machine Learning can be used alternatively to create good performance models in near-term real-world applications.\",\"PeriodicalId\":254711,\"journal\":{\"name\":\"2021 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIKE51210.2021.9410753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIKE51210.2021.9410753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

混合量子经典(HQC)体系结构用于短期NISQ量子计算机,以解决量子机器学习问题。量子计算的优势在于它比经典计算提供了指数级的加速。实现这种算法的主要挑战之一是量子嵌入的选择和功能正确的量子变分电路的使用。在本文中,我们提出了QSVM(量子支持向量机)的应用,使用来自OSMI心理健康技术调查的数据集来预测一个人未来是否需要心理健康治疗。我们通过非经典可模拟的特征映射实现了这一点,并证明了NISQ HQC架构用于量子机器学习可以在近期的实际应用中用于创建良好的性能模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Machine Learning with HQC Architectures using non-Classically Simulable Feature Maps
Hybrid Quantum-Classical (HQC) Architectures are used in near-term NISQ Quantum Computers for solving Quantum Machine Learning problems. The quantum advantage comes into picture due to the exponential speedup offered over classical computing. One of the major challenges in implementing such algorithms is the choice of quantum embeddings and the use of a functionally correct quantum variational circuit. In this paper, we present an application of QSVM (Quantum Support Vector Machines) to predict if a person will require mental health treatment in the future the tech world using the dataset from OSMI Mental Health Tech Surveys. We achieve this with non-classically simulable feature maps and prove that NISQ HQC Architectures for Quantum Machine Learning can be used alternatively to create good performance models in near-term real-world applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信