{"title":"分子束外延生长过程中成分依赖短波HgCdTe的原位椭偏研究","authors":"Liao Yang, Chuan Shen, Lu Chen, Li He","doi":"10.1117/12.2664815","DOIUrl":null,"url":null,"abstract":"Hg1-xCdxTe is considered as the preferred material for high performance infrared photodetectors and imaging focal plane array (FPA) detectors. One of the technical challenges of multi-dimensional integrated HgCdTe epitaxy by molecular beam epitaxy (MBE) lies in the in-situ extraction, characterization and precisely control of a series of parameters such as alloy composition, surface roughness, substrate temperature and film thickness at a relatively low substrate temperature of about 180°C. Therefore, an in-situ, nondestructive spectroscopic ellipsometry (SE) method is needed to characterize the performance of HgCdTe films. In this paper, real time optical property characterization of short-wave Hg1-xCdxTe epitaxial grown by MBE is reported. Run to run feasibility and stability of in-situ SE is confirmed by buffer layer thickness verification in multiple growth runs. Lorentz oscillator parametric model provides a new approach to describe optical dispersion property of HgCdTe over spectral range of 1.5-4.1 eV. The absorption peaks show blue shift with the increase of HgCdTe Cd composition (x). Under this circumstance, the longitudinal x value for HgCdTe during epitaxy process can be obtained in real time without any surface damage by successfully building a composition-dependent optical constant library, with routine run-to-run reproducibility measurement accuracy Δx of ~ 0.0015. This work will facilitate the fabrication of HgCdTe heterojunctions with complex component distribution and doping profiles.","PeriodicalId":258680,"journal":{"name":"Earth and Space From Infrared to Terahertz (ESIT 2022)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ ellipsometric study on composition-dependent short-wave HgCdTe in the process of molecular beam epitaxy growth\",\"authors\":\"Liao Yang, Chuan Shen, Lu Chen, Li He\",\"doi\":\"10.1117/12.2664815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hg1-xCdxTe is considered as the preferred material for high performance infrared photodetectors and imaging focal plane array (FPA) detectors. One of the technical challenges of multi-dimensional integrated HgCdTe epitaxy by molecular beam epitaxy (MBE) lies in the in-situ extraction, characterization and precisely control of a series of parameters such as alloy composition, surface roughness, substrate temperature and film thickness at a relatively low substrate temperature of about 180°C. Therefore, an in-situ, nondestructive spectroscopic ellipsometry (SE) method is needed to characterize the performance of HgCdTe films. In this paper, real time optical property characterization of short-wave Hg1-xCdxTe epitaxial grown by MBE is reported. Run to run feasibility and stability of in-situ SE is confirmed by buffer layer thickness verification in multiple growth runs. Lorentz oscillator parametric model provides a new approach to describe optical dispersion property of HgCdTe over spectral range of 1.5-4.1 eV. The absorption peaks show blue shift with the increase of HgCdTe Cd composition (x). Under this circumstance, the longitudinal x value for HgCdTe during epitaxy process can be obtained in real time without any surface damage by successfully building a composition-dependent optical constant library, with routine run-to-run reproducibility measurement accuracy Δx of ~ 0.0015. This work will facilitate the fabrication of HgCdTe heterojunctions with complex component distribution and doping profiles.\",\"PeriodicalId\":258680,\"journal\":{\"name\":\"Earth and Space From Infrared to Terahertz (ESIT 2022)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Space From Infrared to Terahertz (ESIT 2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2664815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space From Infrared to Terahertz (ESIT 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2664815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In-situ ellipsometric study on composition-dependent short-wave HgCdTe in the process of molecular beam epitaxy growth
Hg1-xCdxTe is considered as the preferred material for high performance infrared photodetectors and imaging focal plane array (FPA) detectors. One of the technical challenges of multi-dimensional integrated HgCdTe epitaxy by molecular beam epitaxy (MBE) lies in the in-situ extraction, characterization and precisely control of a series of parameters such as alloy composition, surface roughness, substrate temperature and film thickness at a relatively low substrate temperature of about 180°C. Therefore, an in-situ, nondestructive spectroscopic ellipsometry (SE) method is needed to characterize the performance of HgCdTe films. In this paper, real time optical property characterization of short-wave Hg1-xCdxTe epitaxial grown by MBE is reported. Run to run feasibility and stability of in-situ SE is confirmed by buffer layer thickness verification in multiple growth runs. Lorentz oscillator parametric model provides a new approach to describe optical dispersion property of HgCdTe over spectral range of 1.5-4.1 eV. The absorption peaks show blue shift with the increase of HgCdTe Cd composition (x). Under this circumstance, the longitudinal x value for HgCdTe during epitaxy process can be obtained in real time without any surface damage by successfully building a composition-dependent optical constant library, with routine run-to-run reproducibility measurement accuracy Δx of ~ 0.0015. This work will facilitate the fabrication of HgCdTe heterojunctions with complex component distribution and doping profiles.