phemt的信号和噪声神经模型

V. Markovic, Z. Marinković
{"title":"phemt的信号和噪声神经模型","authors":"V. Markovic, Z. Marinković","doi":"10.1109/NEUREL.2002.1057995","DOIUrl":null,"url":null,"abstract":"Low-noise pHEMT transistors, that have excellent performances at microwave frequencies, can be described by their scattering and noise parameters. In this paper, a pHEMT neural model, based on multilayer perceptron neural networks is proposed. The obtained neural models can predict transistor's signal and noise performances very efficiently and accurately for a broad range of bias conditions in the operating frequency range.","PeriodicalId":347066,"journal":{"name":"6th Seminar on Neural Network Applications in Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Signal and noise neural models of pHEMTs\",\"authors\":\"V. Markovic, Z. Marinković\",\"doi\":\"10.1109/NEUREL.2002.1057995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low-noise pHEMT transistors, that have excellent performances at microwave frequencies, can be described by their scattering and noise parameters. In this paper, a pHEMT neural model, based on multilayer perceptron neural networks is proposed. The obtained neural models can predict transistor's signal and noise performances very efficiently and accurately for a broad range of bias conditions in the operating frequency range.\",\"PeriodicalId\":347066,\"journal\":{\"name\":\"6th Seminar on Neural Network Applications in Electrical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"6th Seminar on Neural Network Applications in Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2002.1057995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"6th Seminar on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2002.1057995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

低噪声pHEMT晶体管在微波频率下具有优异的性能,可以用其散射和噪声参数来描述。本文提出了一种基于多层感知器神经网络的pHEMT神经模型。所得到的神经网络模型可以在工作频率范围内的宽偏置条件下非常有效和准确地预测晶体管的信号和噪声性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Signal and noise neural models of pHEMTs
Low-noise pHEMT transistors, that have excellent performances at microwave frequencies, can be described by their scattering and noise parameters. In this paper, a pHEMT neural model, based on multilayer perceptron neural networks is proposed. The obtained neural models can predict transistor's signal and noise performances very efficiently and accurately for a broad range of bias conditions in the operating frequency range.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信