经验资产定价模型中的机器学习

Huei-Wen Teng, Yu-Hsien Li, S. Chang
{"title":"经验资产定价模型中的机器学习","authors":"Huei-Wen Teng, Yu-Hsien Li, S. Chang","doi":"10.1109/ICPAI51961.2020.00030","DOIUrl":null,"url":null,"abstract":"Although machine learning has achieved great success in computer science, its performance in the canonical problem of asset pricing in finance is yet to be fully investigated. To compare machine learning techniques and traditional models, we use 8 macroeconomic predictors and 102 firm characteristics to predict stock returns in a monthly basis. It is shown that the neural network outperforms others: Specifically, when building bottom-up portfolios based on the predicted stock-level returns for both buy-and-hold and long-short strategies, XGBoost and neural networks produce portfolios with the highest Sharpe ratios. Limitations and challenges in using machine learning techniques in empirical asset pricing models are also discussed.","PeriodicalId":330198,"journal":{"name":"2020 International Conference on Pervasive Artificial Intelligence (ICPAI)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning in Empirical Asset Pricing Models\",\"authors\":\"Huei-Wen Teng, Yu-Hsien Li, S. Chang\",\"doi\":\"10.1109/ICPAI51961.2020.00030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although machine learning has achieved great success in computer science, its performance in the canonical problem of asset pricing in finance is yet to be fully investigated. To compare machine learning techniques and traditional models, we use 8 macroeconomic predictors and 102 firm characteristics to predict stock returns in a monthly basis. It is shown that the neural network outperforms others: Specifically, when building bottom-up portfolios based on the predicted stock-level returns for both buy-and-hold and long-short strategies, XGBoost and neural networks produce portfolios with the highest Sharpe ratios. Limitations and challenges in using machine learning techniques in empirical asset pricing models are also discussed.\",\"PeriodicalId\":330198,\"journal\":{\"name\":\"2020 International Conference on Pervasive Artificial Intelligence (ICPAI)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Pervasive Artificial Intelligence (ICPAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPAI51961.2020.00030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Pervasive Artificial Intelligence (ICPAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPAI51961.2020.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管机器学习在计算机科学领域取得了巨大的成功,但它在金融资产定价这一典型问题上的表现还有待充分研究。为了比较机器学习技术和传统模型,我们使用8个宏观经济预测指标和102个公司特征来预测每月的股票回报。研究表明,神经网络的表现优于其他方法:具体而言,当基于买入并持有和多空策略的预测股票水平回报构建自下而上的投资组合时,XGBoost和神经网络产生的投资组合具有最高的夏普比率。还讨论了在经验资产定价模型中使用机器学习技术的局限性和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning in Empirical Asset Pricing Models
Although machine learning has achieved great success in computer science, its performance in the canonical problem of asset pricing in finance is yet to be fully investigated. To compare machine learning techniques and traditional models, we use 8 macroeconomic predictors and 102 firm characteristics to predict stock returns in a monthly basis. It is shown that the neural network outperforms others: Specifically, when building bottom-up portfolios based on the predicted stock-level returns for both buy-and-hold and long-short strategies, XGBoost and neural networks produce portfolios with the highest Sharpe ratios. Limitations and challenges in using machine learning techniques in empirical asset pricing models are also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信