关于深度网络的平滑

Vincent Roulet, Zaïd Harchaoui
{"title":"关于深度网络的平滑","authors":"Vincent Roulet, Zaïd Harchaoui","doi":"10.1109/CISS50987.2021.9400285","DOIUrl":null,"url":null,"abstract":"Many popular deep neural networks implement an input-output mapping that is non-smooth with respect to the network parameters. This non-smoothness may have contributed to the difficulty of analyzing deep learning theoretically. Sophisticated approaches have recently been proposed to address this specific difficulty. In this note, we explore a simple approach consisting instead in smoothing the input-output mapping. We show how to perform smoothing automatically within a differentiable programming framework. The impact of the smoothing on the convergence behavior can then be automatically controlled. We illustrate our approach with numerical examples using multilayer perceptrons.","PeriodicalId":228112,"journal":{"name":"2021 55th Annual Conference on Information Sciences and Systems (CISS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Smoothing of Deep Networks\",\"authors\":\"Vincent Roulet, Zaïd Harchaoui\",\"doi\":\"10.1109/CISS50987.2021.9400285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many popular deep neural networks implement an input-output mapping that is non-smooth with respect to the network parameters. This non-smoothness may have contributed to the difficulty of analyzing deep learning theoretically. Sophisticated approaches have recently been proposed to address this specific difficulty. In this note, we explore a simple approach consisting instead in smoothing the input-output mapping. We show how to perform smoothing automatically within a differentiable programming framework. The impact of the smoothing on the convergence behavior can then be automatically controlled. We illustrate our approach with numerical examples using multilayer perceptrons.\",\"PeriodicalId\":228112,\"journal\":{\"name\":\"2021 55th Annual Conference on Information Sciences and Systems (CISS)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 55th Annual Conference on Information Sciences and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS50987.2021.9400285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 55th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS50987.2021.9400285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多流行的深度神经网络实现的输入-输出映射对于网络参数来说是非光滑的。这种不平滑性可能增加了从理论上分析深度学习的难度。最近提出了一些复杂的方法来解决这一具体困难。在本文中,我们将探索一种简单的方法,即平滑输入-输出映射。我们展示了如何在可微规划框架内自动执行平滑。然后可以自动控制平滑对收敛行为的影响。我们用多层感知器的数值例子来说明我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Smoothing of Deep Networks
Many popular deep neural networks implement an input-output mapping that is non-smooth with respect to the network parameters. This non-smoothness may have contributed to the difficulty of analyzing deep learning theoretically. Sophisticated approaches have recently been proposed to address this specific difficulty. In this note, we explore a simple approach consisting instead in smoothing the input-output mapping. We show how to perform smoothing automatically within a differentiable programming framework. The impact of the smoothing on the convergence behavior can then be automatically controlled. We illustrate our approach with numerical examples using multilayer perceptrons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信