拉斯维加斯领导人选举的能源复杂性

Yi-Jun Chang, Shunhua Jiang
{"title":"拉斯维加斯领导人选举的能源复杂性","authors":"Yi-Jun Chang, Shunhua Jiang","doi":"10.1145/3490148.3538586","DOIUrl":null,"url":null,"abstract":"We consider the time (number of communication rounds) and energy (number of non-idle communication rounds per device) complexities of randomized leader election in a multiple-access channel, where the number of devices n ≥ 2 is unknown. It is well-known that for polynomial-time randomized leader election algorithms with success probability 1 - 1/poly(n), the optimal energy complexity is Θ(log log* n) if receivers can detect collisions, and it is Θ(log* n) otherwise.","PeriodicalId":112865,"journal":{"name":"Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Energy Complexity of Las Vegas Leader Election\",\"authors\":\"Yi-Jun Chang, Shunhua Jiang\",\"doi\":\"10.1145/3490148.3538586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the time (number of communication rounds) and energy (number of non-idle communication rounds per device) complexities of randomized leader election in a multiple-access channel, where the number of devices n ≥ 2 is unknown. It is well-known that for polynomial-time randomized leader election algorithms with success probability 1 - 1/poly(n), the optimal energy complexity is Θ(log log* n) if receivers can detect collisions, and it is Θ(log* n) otherwise.\",\"PeriodicalId\":112865,\"journal\":{\"name\":\"Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3490148.3538586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3490148.3538586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑了多址信道中随机领导者选举的时间(通信轮数)和能量(每个设备的非空闲通信轮数)复杂性,其中设备数n≥2是未知的。众所周知,对于成功概率为1 - 1/poly(n)的多项式时间随机领导者选举算法,如果接收器能够检测到碰撞,其最优能量复杂度为Θ(log log* n),否则为Θ(log* n)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Energy Complexity of Las Vegas Leader Election
We consider the time (number of communication rounds) and energy (number of non-idle communication rounds per device) complexities of randomized leader election in a multiple-access channel, where the number of devices n ≥ 2 is unknown. It is well-known that for polynomial-time randomized leader election algorithms with success probability 1 - 1/poly(n), the optimal energy complexity is Θ(log log* n) if receivers can detect collisions, and it is Θ(log* n) otherwise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信