基于融合的检索增强性能预测

Haggai Roitman
{"title":"基于融合的检索增强性能预测","authors":"Haggai Roitman","doi":"10.1145/3234944.3234950","DOIUrl":null,"url":null,"abstract":"We study the query performance prediction (QPP) task for fusion-based retrieval. Within such a retrieval setting, several ranked lists, each one retrieved by a different method, are combined into a single (fused) ranked list. A common prediction approach is to treat the (base) ranked lists as reference lists and combine those lists' QPP estimates according to their similarity with the fused-list. Yet, we identify a gap in the way that relevance-dependent aspects of inter-list relationships are modeled within such an approach. Aiming to address this gap, we derive an enhanced estimation approach which results in a more accurate prediction.","PeriodicalId":193631,"journal":{"name":"Proceedings of the 2018 ACM SIGIR International Conference on Theory of Information Retrieval","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Enhanced Performance Prediction of Fusion-based Retrieval\",\"authors\":\"Haggai Roitman\",\"doi\":\"10.1145/3234944.3234950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the query performance prediction (QPP) task for fusion-based retrieval. Within such a retrieval setting, several ranked lists, each one retrieved by a different method, are combined into a single (fused) ranked list. A common prediction approach is to treat the (base) ranked lists as reference lists and combine those lists' QPP estimates according to their similarity with the fused-list. Yet, we identify a gap in the way that relevance-dependent aspects of inter-list relationships are modeled within such an approach. Aiming to address this gap, we derive an enhanced estimation approach which results in a more accurate prediction.\",\"PeriodicalId\":193631,\"journal\":{\"name\":\"Proceedings of the 2018 ACM SIGIR International Conference on Theory of Information Retrieval\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM SIGIR International Conference on Theory of Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3234944.3234950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM SIGIR International Conference on Theory of Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3234944.3234950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

研究了基于融合检索的查询性能预测(QPP)任务。在这样的检索设置中,几个排名列表(每个列表通过不同的方法检索)被组合成一个(融合的)排名列表。一种常见的预测方法是将(基本)排名列表作为参考列表,并根据它们与融合列表的相似度将这些列表的QPP估计合并。然而,我们发现在这种方法中对表间关系的相关性依赖方面进行建模的方式存在差距。为了解决这一差距,我们推导出一种增强的估计方法,从而得到更准确的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Performance Prediction of Fusion-based Retrieval
We study the query performance prediction (QPP) task for fusion-based retrieval. Within such a retrieval setting, several ranked lists, each one retrieved by a different method, are combined into a single (fused) ranked list. A common prediction approach is to treat the (base) ranked lists as reference lists and combine those lists' QPP estimates according to their similarity with the fused-list. Yet, we identify a gap in the way that relevance-dependent aspects of inter-list relationships are modeled within such an approach. Aiming to address this gap, we derive an enhanced estimation approach which results in a more accurate prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信