ARFIMA模型中使用自举G的预测区间

G. Franco, Gustavo C. Lana, V. Reisen
{"title":"ARFIMA模型中使用自举G的预测区间","authors":"G. Franco, Gustavo C. Lana, V. Reisen","doi":"10.24294/FSJ.V1I3.687","DOIUrl":null,"url":null,"abstract":"This paper presents a bootstrap resampling scheme to build pre-diction intervals for future values in fractionally autoregressive movingaverage (ARFIMA) models. Standard techniques to calculate forecastintervals rely on the assumption of normality of the data and do nottake into account the uncertainty associated with parameter estima-tion. Bootstrap procedures, as nonparametric methods, can overcomethese diculties. In this paper, we test two bootstrap prediction in-tervals based on the nonparametric bootstrap in the residuals of theARFIMA model. In this paper, two bootstrap prediction intervals areproposed based on the nonparametric bootstrap in the residuals ofthe ARFIMA model. The rst one is the well known percentile boot-strap, (Thombs and Schucany, 1990; Pascual et al., 2004), never usedfor ARFIMA models to the knowlegde of the authors. For the secondapproach, the intervals are calculated using the quantiles of the empir-ical distribution of the bootstrap prediction errors (Masarotto, 1990;Bisaglia e Grigoletto, 2001). The intervals are compared, througha Monte Carlo experiment, to the asymptotic interval, under Gaus-sian and non-Gaussian error distributions. The results show that thebootstrap intervals present coverage rates closer to the nominal levelassumed, when compared to the asymptotic standard method. An ap-plication to real data of temperature in New York city is also presentedto illustrate the procedures.","PeriodicalId":447992,"journal":{"name":"Financial Statistical Journal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction intervals in the ARFIMA model using bootstrap G\",\"authors\":\"G. Franco, Gustavo C. Lana, V. Reisen\",\"doi\":\"10.24294/FSJ.V1I3.687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a bootstrap resampling scheme to build pre-diction intervals for future values in fractionally autoregressive movingaverage (ARFIMA) models. Standard techniques to calculate forecastintervals rely on the assumption of normality of the data and do nottake into account the uncertainty associated with parameter estima-tion. Bootstrap procedures, as nonparametric methods, can overcomethese diculties. In this paper, we test two bootstrap prediction in-tervals based on the nonparametric bootstrap in the residuals of theARFIMA model. In this paper, two bootstrap prediction intervals areproposed based on the nonparametric bootstrap in the residuals ofthe ARFIMA model. The rst one is the well known percentile boot-strap, (Thombs and Schucany, 1990; Pascual et al., 2004), never usedfor ARFIMA models to the knowlegde of the authors. For the secondapproach, the intervals are calculated using the quantiles of the empir-ical distribution of the bootstrap prediction errors (Masarotto, 1990;Bisaglia e Grigoletto, 2001). The intervals are compared, througha Monte Carlo experiment, to the asymptotic interval, under Gaus-sian and non-Gaussian error distributions. The results show that thebootstrap intervals present coverage rates closer to the nominal levelassumed, when compared to the asymptotic standard method. An ap-plication to real data of temperature in New York city is also presentedto illustrate the procedures.\",\"PeriodicalId\":447992,\"journal\":{\"name\":\"Financial Statistical Journal\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Financial Statistical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24294/FSJ.V1I3.687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Financial Statistical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24294/FSJ.V1I3.687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种自举重采样方案,用于建立分数自回归移动平均(ARFIMA)模型中未来值的预测区间。计算预测区间的标准技术依赖于对数据正态性的假设,而不考虑与参数估计相关的不确定性。作为非参数方法的自举过程可以克服这些困难。本文对arfima模型残差中基于非参数自举的两个自举预测区间进行了检验。本文基于ARFIMA模型残差中的非参数自举,提出了两个自举预测区间。第一个是众所周知的百分位靴带(Thombs and Schucany, 1990;Pascual et al., 2004),据作者所知从未使用过ARFIMA模型。对于第二种方法,使用自举预测误差的经验分布的分位数来计算区间(Masarotto, 1990;Bisaglia e Grigoletto, 2001)。通过蒙特卡罗实验,将区间与高斯和非高斯误差分布下的渐近区间进行了比较。结果表明,与渐近标准方法相比,自举区间呈现的覆盖率更接近于假设的名义水平。最后以纽约市的实际温度数据为例说明了该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction intervals in the ARFIMA model using bootstrap G
This paper presents a bootstrap resampling scheme to build pre-diction intervals for future values in fractionally autoregressive movingaverage (ARFIMA) models. Standard techniques to calculate forecastintervals rely on the assumption of normality of the data and do nottake into account the uncertainty associated with parameter estima-tion. Bootstrap procedures, as nonparametric methods, can overcomethese diculties. In this paper, we test two bootstrap prediction in-tervals based on the nonparametric bootstrap in the residuals of theARFIMA model. In this paper, two bootstrap prediction intervals areproposed based on the nonparametric bootstrap in the residuals ofthe ARFIMA model. The rst one is the well known percentile boot-strap, (Thombs and Schucany, 1990; Pascual et al., 2004), never usedfor ARFIMA models to the knowlegde of the authors. For the secondapproach, the intervals are calculated using the quantiles of the empir-ical distribution of the bootstrap prediction errors (Masarotto, 1990;Bisaglia e Grigoletto, 2001). The intervals are compared, througha Monte Carlo experiment, to the asymptotic interval, under Gaus-sian and non-Gaussian error distributions. The results show that thebootstrap intervals present coverage rates closer to the nominal levelassumed, when compared to the asymptotic standard method. An ap-plication to real data of temperature in New York city is also presentedto illustrate the procedures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信