基于模式识别系统的电力干扰识别

Soon-Kin Chai, Sekar, Rajan
{"title":"基于模式识别系统的电力干扰识别","authors":"Soon-Kin Chai, Sekar, Rajan","doi":"10.1109/SECON.2000.845454","DOIUrl":null,"url":null,"abstract":"This paper presents an artificial intelligent system to identify and classify the power disturbance waveforms that are obtained from the monitoring system in a power control station. The pattern recognition technique used in this paper is a combination of Bayes' linear classifier and artificial neural network (ANN). Simulated disturbance waveforms are transformed by the fast Fourier transformation and the feature vector is extracted. The weight matrix for ANN is generated by the linear classifier and fed into ANN. The product of the test sample and the weight matrix will be the input of the ANN. The system can identify the power disturbance and it can provide the power surge frequency as well.","PeriodicalId":206022,"journal":{"name":"Proceedings of the IEEE SoutheastCon 2000. 'Preparing for The New Millennium' (Cat. No.00CH37105)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power disturbance identification through pattern recognition system\",\"authors\":\"Soon-Kin Chai, Sekar, Rajan\",\"doi\":\"10.1109/SECON.2000.845454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an artificial intelligent system to identify and classify the power disturbance waveforms that are obtained from the monitoring system in a power control station. The pattern recognition technique used in this paper is a combination of Bayes' linear classifier and artificial neural network (ANN). Simulated disturbance waveforms are transformed by the fast Fourier transformation and the feature vector is extracted. The weight matrix for ANN is generated by the linear classifier and fed into ANN. The product of the test sample and the weight matrix will be the input of the ANN. The system can identify the power disturbance and it can provide the power surge frequency as well.\",\"PeriodicalId\":206022,\"journal\":{\"name\":\"Proceedings of the IEEE SoutheastCon 2000. 'Preparing for The New Millennium' (Cat. No.00CH37105)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE SoutheastCon 2000. 'Preparing for The New Millennium' (Cat. No.00CH37105)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON.2000.845454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE SoutheastCon 2000. 'Preparing for The New Millennium' (Cat. No.00CH37105)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.2000.845454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种人工智能系统,用于对电站监测系统接收的电力干扰波形进行识别和分类。本文所采用的模式识别技术是贝叶斯线性分类器与人工神经网络(ANN)的结合。采用快速傅立叶变换对模拟扰动波形进行变换,提取特征向量。神经网络的权值矩阵由线性分类器生成并输入到神经网络中。测试样本和权重矩阵的乘积将作为人工神经网络的输入。该系统能够识别电力干扰,并提供电力浪涌频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power disturbance identification through pattern recognition system
This paper presents an artificial intelligent system to identify and classify the power disturbance waveforms that are obtained from the monitoring system in a power control station. The pattern recognition technique used in this paper is a combination of Bayes' linear classifier and artificial neural network (ANN). Simulated disturbance waveforms are transformed by the fast Fourier transformation and the feature vector is extracted. The weight matrix for ANN is generated by the linear classifier and fed into ANN. The product of the test sample and the weight matrix will be the input of the ANN. The system can identify the power disturbance and it can provide the power surge frequency as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信