利用神经网络进行表面重建

D. S. Chen, R. Jain, B. G. Schunck
{"title":"利用神经网络进行表面重建","authors":"D. S. Chen, R. Jain, B. G. Schunck","doi":"10.1109/CVPR.1992.223251","DOIUrl":null,"url":null,"abstract":"A surface reconstruction method using multilayer feedforward neural networks is proposed. The parametric form represented by multilayer neural networks can model piecewise smooth surfaces in a way that is more general and flexible than many of the classical methods. The approximation method is based on a robust backpropagation (BP) algorithm, which extends the basic BP algorithm to handle errors, especially others, in the training data.<<ETX>>","PeriodicalId":325476,"journal":{"name":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Surface reconstruction using neural networks\",\"authors\":\"D. S. Chen, R. Jain, B. G. Schunck\",\"doi\":\"10.1109/CVPR.1992.223251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A surface reconstruction method using multilayer feedforward neural networks is proposed. The parametric form represented by multilayer neural networks can model piecewise smooth surfaces in a way that is more general and flexible than many of the classical methods. The approximation method is based on a robust backpropagation (BP) algorithm, which extends the basic BP algorithm to handle errors, especially others, in the training data.<<ETX>>\",\"PeriodicalId\":325476,\"journal\":{\"name\":\"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1992.223251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1992.223251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

提出了一种基于多层前馈神经网络的曲面重构方法。以多层神经网络为代表的参数形式能够以一种比许多经典方法更通用、更灵活的方式对光滑表面分段建模。该近似方法基于鲁棒反向传播(BP)算法,扩展了基本BP算法来处理训练数据中的错误,特别是其他错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surface reconstruction using neural networks
A surface reconstruction method using multilayer feedforward neural networks is proposed. The parametric form represented by multilayer neural networks can model piecewise smooth surfaces in a way that is more general and flexible than many of the classical methods. The approximation method is based on a robust backpropagation (BP) algorithm, which extends the basic BP algorithm to handle errors, especially others, in the training data.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信