“跟踪器:对统计数据库安全的威胁,作者:D. E. Denning, P. J. Denning, and M. D. Schwartz”,ACM译。数据库系统,1979年

J. Belzer
{"title":"“跟踪器:对统计数据库安全的威胁,作者:D. E. Denning, P. J. Denning, and M. D. Schwartz”,ACM译。数据库系统,1979年","authors":"J. Belzer","doi":"10.1145/1103009.1103012","DOIUrl":null,"url":null,"abstract":"The authors point out that queries to the system compute raw statistics for a query set. Questioners with prior knowledge of a given individual can divide their queries into parts such that when reassembled into a special characteristic, formulas will isolate the proprietary information about the individual. These formulas are called trackers, The paper reviews the literature on the extent and limits of trackers, provides excellent information to show how they can extract individualized information and so subvert the confidentiality of database files. The paper also reviews individual trackers and defines ranges within which they work, and shows how statistical responses to queries do compromise confidentiality of information, positively or negatively; positively if the individual falls into the given category and negatively if not. The authors then proceed to develop a general tracker and show how it can be applied within restricted subranges to extract individualized information. Under conditions where this fails, they show how a double tracker can be used. In general, trackers for most statistical database systems exist within the database, or can be easily obtained, thereby compromising the confidentiality of the data.","PeriodicalId":129356,"journal":{"name":"ACM Sigsoc Bulletin","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review of \\\"The tracker: a threat to statistical database security, by D. E. Denning, P. J. Denning, and M. D. Schwartz\\\", ACM Trans. Database Systems, 1979\",\"authors\":\"J. Belzer\",\"doi\":\"10.1145/1103009.1103012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors point out that queries to the system compute raw statistics for a query set. Questioners with prior knowledge of a given individual can divide their queries into parts such that when reassembled into a special characteristic, formulas will isolate the proprietary information about the individual. These formulas are called trackers, The paper reviews the literature on the extent and limits of trackers, provides excellent information to show how they can extract individualized information and so subvert the confidentiality of database files. The paper also reviews individual trackers and defines ranges within which they work, and shows how statistical responses to queries do compromise confidentiality of information, positively or negatively; positively if the individual falls into the given category and negatively if not. The authors then proceed to develop a general tracker and show how it can be applied within restricted subranges to extract individualized information. Under conditions where this fails, they show how a double tracker can be used. In general, trackers for most statistical database systems exist within the database, or can be easily obtained, thereby compromising the confidentiality of the data.\",\"PeriodicalId\":129356,\"journal\":{\"name\":\"ACM Sigsoc Bulletin\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Sigsoc Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1103009.1103012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Sigsoc Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1103009.1103012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作者指出,对系统的查询计算查询集的原始统计信息。对给定的个人有先验知识的提问者可以将他们的查询分成几个部分,这样当重新组合成一个特殊的特征时,公式将隔离关于个人的专有信息。本文回顾了关于跟踪器的范围和限制的文献,提供了优秀的信息来说明它们如何提取个性化信息,从而破坏数据库文件的机密性。本文还回顾了单个跟踪器,并定义了它们的工作范围,并展示了对查询的统计响应如何损害信息的机密性,无论是积极的还是消极的;如果这个人属于特定的类别,那就是积极的,如果不是,那就是消极的。作者接着开发了一个通用跟踪器,并展示了如何在有限的子范围内应用它来提取个性化信息。在这种方法失败的情况下,他们展示了如何使用双跟踪器。一般来说,大多数统计数据库系统的跟踪器存在于数据库中,或者可以很容易地获得,从而损害了数据的机密性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Review of "The tracker: a threat to statistical database security, by D. E. Denning, P. J. Denning, and M. D. Schwartz", ACM Trans. Database Systems, 1979
The authors point out that queries to the system compute raw statistics for a query set. Questioners with prior knowledge of a given individual can divide their queries into parts such that when reassembled into a special characteristic, formulas will isolate the proprietary information about the individual. These formulas are called trackers, The paper reviews the literature on the extent and limits of trackers, provides excellent information to show how they can extract individualized information and so subvert the confidentiality of database files. The paper also reviews individual trackers and defines ranges within which they work, and shows how statistical responses to queries do compromise confidentiality of information, positively or negatively; positively if the individual falls into the given category and negatively if not. The authors then proceed to develop a general tracker and show how it can be applied within restricted subranges to extract individualized information. Under conditions where this fails, they show how a double tracker can be used. In general, trackers for most statistical database systems exist within the database, or can be easily obtained, thereby compromising the confidentiality of the data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信