{"title":"增强生物医学文本摘要与问答:基于特定领域预训练的应用","authors":"Dima Galat, Marian-Andrei Rizoiu","doi":"10.48550/arXiv.2307.04412","DOIUrl":null,"url":null,"abstract":"Biomedical summarization requires large datasets to train for text generation. We show that while transfer learning offers a viable option for addressing this challenge, an in-domain pre-training does not always offer advantages in a BioASQ summarization task. We identify a suitable model architecture and use it to show a benefit of a general-domain pre-training followed by a task-specific fine-tuning in the context of a BioASQ summarization task, leading to a novel three-step fine-tuning approach that works with only a thousand in-domain examples. Our results indicate that a Large Language Model without domain-specific pre-training can have a significant edge in some domain-specific biomedical text generation tasks.","PeriodicalId":232729,"journal":{"name":"Conference and Labs of the Evaluation Forum","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhancing Biomedical Text Summarization and Question-Answering: On the Utility of Domain-Specific Pre-Training\",\"authors\":\"Dima Galat, Marian-Andrei Rizoiu\",\"doi\":\"10.48550/arXiv.2307.04412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biomedical summarization requires large datasets to train for text generation. We show that while transfer learning offers a viable option for addressing this challenge, an in-domain pre-training does not always offer advantages in a BioASQ summarization task. We identify a suitable model architecture and use it to show a benefit of a general-domain pre-training followed by a task-specific fine-tuning in the context of a BioASQ summarization task, leading to a novel three-step fine-tuning approach that works with only a thousand in-domain examples. Our results indicate that a Large Language Model without domain-specific pre-training can have a significant edge in some domain-specific biomedical text generation tasks.\",\"PeriodicalId\":232729,\"journal\":{\"name\":\"Conference and Labs of the Evaluation Forum\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference and Labs of the Evaluation Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2307.04412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference and Labs of the Evaluation Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.04412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing Biomedical Text Summarization and Question-Answering: On the Utility of Domain-Specific Pre-Training
Biomedical summarization requires large datasets to train for text generation. We show that while transfer learning offers a viable option for addressing this challenge, an in-domain pre-training does not always offer advantages in a BioASQ summarization task. We identify a suitable model architecture and use it to show a benefit of a general-domain pre-training followed by a task-specific fine-tuning in the context of a BioASQ summarization task, leading to a novel three-step fine-tuning approach that works with only a thousand in-domain examples. Our results indicate that a Large Language Model without domain-specific pre-training can have a significant edge in some domain-specific biomedical text generation tasks.