认知无线电中基于copula的OFDM信号协同感知

Akhil Singh, Sai Praneeth Chokkarapu, S. Chaudhari, P. Varshney
{"title":"认知无线电中基于copula的OFDM信号协同感知","authors":"Akhil Singh, Sai Praneeth Chokkarapu, S. Chaudhari, P. Varshney","doi":"10.1109/COMSNETS48256.2020.9027401","DOIUrl":null,"url":null,"abstract":"This paper proposes the use of copula theory for cooperative spectrum sensing (CSS) of orthogonal frequency-division multiplexing (OFDM) based primary user (PU). A distributed detection model is assumed where secondary users (SUs) employ autocorrelation detectors (ADs) for the detection of a PU. In the presence of a PU, it is assumed that the observations across different SUs and subsequently the decision statistics are dependent. For the fusion of these dependent statistics, different copulas such as $t$-copula, Gaussian, Clayton and Gumbel are employed. In the presence of dependence among decision statistics, significant improvement in detection performance is observed while using copula theory instead of the traditional assumption of independence. Simulation results are presented to show the superiority of copula-based spectrum sensing.","PeriodicalId":265871,"journal":{"name":"2020 International Conference on COMmunication Systems & NETworkS (COMSNETS)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Copula-Based Cooperative Sensing of OFDM Signals in Cognitive Radios\",\"authors\":\"Akhil Singh, Sai Praneeth Chokkarapu, S. Chaudhari, P. Varshney\",\"doi\":\"10.1109/COMSNETS48256.2020.9027401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes the use of copula theory for cooperative spectrum sensing (CSS) of orthogonal frequency-division multiplexing (OFDM) based primary user (PU). A distributed detection model is assumed where secondary users (SUs) employ autocorrelation detectors (ADs) for the detection of a PU. In the presence of a PU, it is assumed that the observations across different SUs and subsequently the decision statistics are dependent. For the fusion of these dependent statistics, different copulas such as $t$-copula, Gaussian, Clayton and Gumbel are employed. In the presence of dependence among decision statistics, significant improvement in detection performance is observed while using copula theory instead of the traditional assumption of independence. Simulation results are presented to show the superiority of copula-based spectrum sensing.\",\"PeriodicalId\":265871,\"journal\":{\"name\":\"2020 International Conference on COMmunication Systems & NETworkS (COMSNETS)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on COMmunication Systems & NETworkS (COMSNETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMSNETS48256.2020.9027401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on COMmunication Systems & NETworkS (COMSNETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMSNETS48256.2020.9027401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了将copula理论应用于基于主用户的正交频分复用(OFDM)协同频谱感知(CSS)。假设采用分布式检测模型,secondary user (su)使用自相关检测器(ad)检测PU。在存在PU的情况下,假设跨不同su的观察结果以及随后的决策统计是相互依赖的。对于这些相关统计量的融合,使用了不同的copula,如$t$-copula,高斯,Clayton和Gumbel。在决策统计量之间存在相关性的情况下,使用copula理论代替传统的独立假设,可以显著提高决策统计量的检测性能。仿真结果表明了基于copula的频谱感知的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Copula-Based Cooperative Sensing of OFDM Signals in Cognitive Radios
This paper proposes the use of copula theory for cooperative spectrum sensing (CSS) of orthogonal frequency-division multiplexing (OFDM) based primary user (PU). A distributed detection model is assumed where secondary users (SUs) employ autocorrelation detectors (ADs) for the detection of a PU. In the presence of a PU, it is assumed that the observations across different SUs and subsequently the decision statistics are dependent. For the fusion of these dependent statistics, different copulas such as $t$-copula, Gaussian, Clayton and Gumbel are employed. In the presence of dependence among decision statistics, significant improvement in detection performance is observed while using copula theory instead of the traditional assumption of independence. Simulation results are presented to show the superiority of copula-based spectrum sensing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信