基于gnn的辅助元模型和模型规范的推荐系统

Juri Di Rocco, Claudio Di Sipio, D. D. Ruscio, Phuong T. Nguyen
{"title":"基于gnn的辅助元模型和模型规范的推荐系统","authors":"Juri Di Rocco, Claudio Di Sipio, D. D. Ruscio, Phuong T. Nguyen","doi":"10.1109/MODELS50736.2021.00016","DOIUrl":null,"url":null,"abstract":"Nowadays, while modeling environments provide users with facilities to specify different kinds of artifacts, e.g., metamodels, models, and transformations, the possibility of learning from previous modeling experiences and being assisted during modeling tasks remains largely unexplored. In this paper, we propose MORGAN, a recommender system based on a graph neural network (GNN) to assist modelers in performing the specification of metamodels and models. The (meta)model being specified, and the training data are encoded in a graph-based format by exploiting natural language processing (NLP) techniques. Afterward, a graph kernel function uses the extracted graphs to provide modelers with relevant recommendations to complete the partially specified (meta)models. We evaluated MORGAN on real-world datasets using various quality metrics, i.e., precision, recall, and F-measure. The experimental results are encouraging and demonstrate the feasibility of our tool to support modelers while specifying metamodels and models.","PeriodicalId":375828,"journal":{"name":"2021 ACM/IEEE 24th International Conference on Model Driven Engineering Languages and Systems (MODELS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A GNN-based Recommender System to Assist the Specification of Metamodels and Models\",\"authors\":\"Juri Di Rocco, Claudio Di Sipio, D. D. Ruscio, Phuong T. Nguyen\",\"doi\":\"10.1109/MODELS50736.2021.00016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, while modeling environments provide users with facilities to specify different kinds of artifacts, e.g., metamodels, models, and transformations, the possibility of learning from previous modeling experiences and being assisted during modeling tasks remains largely unexplored. In this paper, we propose MORGAN, a recommender system based on a graph neural network (GNN) to assist modelers in performing the specification of metamodels and models. The (meta)model being specified, and the training data are encoded in a graph-based format by exploiting natural language processing (NLP) techniques. Afterward, a graph kernel function uses the extracted graphs to provide modelers with relevant recommendations to complete the partially specified (meta)models. We evaluated MORGAN on real-world datasets using various quality metrics, i.e., precision, recall, and F-measure. The experimental results are encouraging and demonstrate the feasibility of our tool to support modelers while specifying metamodels and models.\",\"PeriodicalId\":375828,\"journal\":{\"name\":\"2021 ACM/IEEE 24th International Conference on Model Driven Engineering Languages and Systems (MODELS)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 ACM/IEEE 24th International Conference on Model Driven Engineering Languages and Systems (MODELS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MODELS50736.2021.00016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 ACM/IEEE 24th International Conference on Model Driven Engineering Languages and Systems (MODELS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MODELS50736.2021.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

如今,虽然建模环境为用户提供了指定不同种类的工件的工具,例如,元模型、模型和转换,但是从以前的建模经验中学习和在建模任务期间得到帮助的可能性在很大程度上仍然未被探索。在本文中,我们提出了一个基于图神经网络(GNN)的推荐系统MORGAN,以帮助建模者执行元模型和模型的规范。指定(元)模型,并利用自然语言处理(NLP)技术将训练数据编码为基于图的格式。然后,图核函数使用提取的图向建模者提供相关建议,以完成部分指定的(元)模型。我们使用各种质量指标(即精度、召回率和F-measure)在真实数据集上评估MORGAN。实验结果令人鼓舞,并证明了我们的工具在指定元模型和模型时支持建模者的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A GNN-based Recommender System to Assist the Specification of Metamodels and Models
Nowadays, while modeling environments provide users with facilities to specify different kinds of artifacts, e.g., metamodels, models, and transformations, the possibility of learning from previous modeling experiences and being assisted during modeling tasks remains largely unexplored. In this paper, we propose MORGAN, a recommender system based on a graph neural network (GNN) to assist modelers in performing the specification of metamodels and models. The (meta)model being specified, and the training data are encoded in a graph-based format by exploiting natural language processing (NLP) techniques. Afterward, a graph kernel function uses the extracted graphs to provide modelers with relevant recommendations to complete the partially specified (meta)models. We evaluated MORGAN on real-world datasets using various quality metrics, i.e., precision, recall, and F-measure. The experimental results are encouraging and demonstrate the feasibility of our tool to support modelers while specifying metamodels and models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信