{"title":"具有两个自由度的可积非退化哈密顿系统的borm理论。高维可积系统的一个新的拓扑不变量","authors":"A. Fomenko","doi":"10.1070/IM1992V039N01ABEH002224","DOIUrl":null,"url":null,"abstract":"Some new objects, bordisms of integrable systems, are found and studied. The classes of rigidly bordant systems form a nontrivial abelian group, which makes it possible to construct new integrable systems on the basis of previously known ones. Among the generators of this bordism group are known physical integrable systems, as, for example, the Lagrange system (from the dynamics of a heavy rigid body) and others. Moreover, a new topological invariant of systems with many degrees of freedom is also constructed. It turns out that two integrable systems are topologically equivalent if and only if their invariants coincide. In particular, it follows from this that the set of topological classes of integrable systems is discrete. The invariant can be effectively calculated for concrete integrable systems arising in physics and mechanics.","PeriodicalId":159459,"journal":{"name":"Mathematics of The Ussr-izvestiya","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"A BORDISM THEORY FOR INTEGRABLE NONDEGENERATE HAMILTONIAN SYSTEMS WITH TWO DEGREES OF FREEDOM. A NEW TOPOLOGICAL INVARIANT OF HIGHER-DIMENSIONAL INTEGRABLE SYSTEMS\",\"authors\":\"A. Fomenko\",\"doi\":\"10.1070/IM1992V039N01ABEH002224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some new objects, bordisms of integrable systems, are found and studied. The classes of rigidly bordant systems form a nontrivial abelian group, which makes it possible to construct new integrable systems on the basis of previously known ones. Among the generators of this bordism group are known physical integrable systems, as, for example, the Lagrange system (from the dynamics of a heavy rigid body) and others. Moreover, a new topological invariant of systems with many degrees of freedom is also constructed. It turns out that two integrable systems are topologically equivalent if and only if their invariants coincide. In particular, it follows from this that the set of topological classes of integrable systems is discrete. The invariant can be effectively calculated for concrete integrable systems arising in physics and mechanics.\",\"PeriodicalId\":159459,\"journal\":{\"name\":\"Mathematics of The Ussr-izvestiya\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of The Ussr-izvestiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1070/IM1992V039N01ABEH002224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-izvestiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/IM1992V039N01ABEH002224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A BORDISM THEORY FOR INTEGRABLE NONDEGENERATE HAMILTONIAN SYSTEMS WITH TWO DEGREES OF FREEDOM. A NEW TOPOLOGICAL INVARIANT OF HIGHER-DIMENSIONAL INTEGRABLE SYSTEMS
Some new objects, bordisms of integrable systems, are found and studied. The classes of rigidly bordant systems form a nontrivial abelian group, which makes it possible to construct new integrable systems on the basis of previously known ones. Among the generators of this bordism group are known physical integrable systems, as, for example, the Lagrange system (from the dynamics of a heavy rigid body) and others. Moreover, a new topological invariant of systems with many degrees of freedom is also constructed. It turns out that two integrable systems are topologically equivalent if and only if their invariants coincide. In particular, it follows from this that the set of topological classes of integrable systems is discrete. The invariant can be effectively calculated for concrete integrable systems arising in physics and mechanics.