生物医学文献中PPI提取的关系字典构建与规则学习

Xiyue Guo, Tingting He, Jie Yuan
{"title":"生物医学文献中PPI提取的关系字典构建与规则学习","authors":"Xiyue Guo, Tingting He, Jie Yuan","doi":"10.1109/BIBM.2015.7359841","DOIUrl":null,"url":null,"abstract":"Using rules to extract protein-protein interactions (PPI) from biomedical literatures has shown recognized positive effect, but the process of making rules is time-costing and expensive. Relation dictionary-based rule is an effective way to solve the problem, while it also encounters a new problem: how to design an excellent dictionary fast and correctly. This paper proposes a weakly supervised method to construct the PPI relation dictionary, and presents a slot-filling method to learn PPI relation rules automatically according to the position of proteins and relation words. Moreover, this method does not depend on much more manual intervention. We conduct the experiment using 5 types of authoritative biomedical PPI corpus, and the results show that our method can improve the PPI extraction effect obviously.","PeriodicalId":186217,"journal":{"name":"2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Relation dictionary construction and rule learning for PPI extraction from biomedical literatures\",\"authors\":\"Xiyue Guo, Tingting He, Jie Yuan\",\"doi\":\"10.1109/BIBM.2015.7359841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using rules to extract protein-protein interactions (PPI) from biomedical literatures has shown recognized positive effect, but the process of making rules is time-costing and expensive. Relation dictionary-based rule is an effective way to solve the problem, while it also encounters a new problem: how to design an excellent dictionary fast and correctly. This paper proposes a weakly supervised method to construct the PPI relation dictionary, and presents a slot-filling method to learn PPI relation rules automatically according to the position of proteins and relation words. Moreover, this method does not depend on much more manual intervention. We conduct the experiment using 5 types of authoritative biomedical PPI corpus, and the results show that our method can improve the PPI extraction effect obviously.\",\"PeriodicalId\":186217,\"journal\":{\"name\":\"2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2015.7359841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2015.7359841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

利用规则从生物医学文献中提取蛋白质-蛋白质相互作用(PPI)已显示出公认的积极效果,但规则的制定过程耗时且成本高昂。基于关系字典的规则是解决这一问题的有效途径,但它也遇到了一个新的问题:如何快速、正确地设计出优秀的字典。提出了一种弱监督的PPI关系字典构建方法,并提出了一种根据蛋白质和关系词的位置自动学习PPI关系规则的补槽方法。此外,这种方法不依赖于更多的人工干预。我们使用5种权威的生物医学PPI语料库进行实验,结果表明我们的方法可以明显提高PPI的提取效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relation dictionary construction and rule learning for PPI extraction from biomedical literatures
Using rules to extract protein-protein interactions (PPI) from biomedical literatures has shown recognized positive effect, but the process of making rules is time-costing and expensive. Relation dictionary-based rule is an effective way to solve the problem, while it also encounters a new problem: how to design an excellent dictionary fast and correctly. This paper proposes a weakly supervised method to construct the PPI relation dictionary, and presents a slot-filling method to learn PPI relation rules automatically according to the position of proteins and relation words. Moreover, this method does not depend on much more manual intervention. We conduct the experiment using 5 types of authoritative biomedical PPI corpus, and the results show that our method can improve the PPI extraction effect obviously.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信