基于机器学习的源代码抄袭检测

N. Viuginov, P. Grachev, A. Filchenkov
{"title":"基于机器学习的源代码抄袭检测","authors":"N. Viuginov, P. Grachev, A. Filchenkov","doi":"10.1145/3446132.3446420","DOIUrl":null,"url":null,"abstract":"Converting source codes to feature vectors can be useful in programming-related tasks, such as plagiarism detection on ACM contests. We present a brand-new method for feature extraction from C++ files, which includes both features describing syntactic and lexical properties of an AST tree and features characterizing disassembly of source code. We propose a method for solving the plagiarism detection task as a classification problem. We prove the effectiveness of our feature set by testing on a dataset that contains 50 ACM problems and ∼90k solutions for them. Trained xgboost model gets a relative binary f1-score=0.745 on the test set.","PeriodicalId":125388,"journal":{"name":"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Machine Learning Based Plagiarism Detection in Source Code\",\"authors\":\"N. Viuginov, P. Grachev, A. Filchenkov\",\"doi\":\"10.1145/3446132.3446420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Converting source codes to feature vectors can be useful in programming-related tasks, such as plagiarism detection on ACM contests. We present a brand-new method for feature extraction from C++ files, which includes both features describing syntactic and lexical properties of an AST tree and features characterizing disassembly of source code. We propose a method for solving the plagiarism detection task as a classification problem. We prove the effectiveness of our feature set by testing on a dataset that contains 50 ACM problems and ∼90k solutions for them. Trained xgboost model gets a relative binary f1-score=0.745 on the test set.\",\"PeriodicalId\":125388,\"journal\":{\"name\":\"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3446132.3446420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3446132.3446420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

将源代码转换为特征向量在编程相关任务中很有用,例如ACM竞赛的剽窃检测。本文提出了一种从c++文件中提取特征的新方法,该方法既包括描述AST树的语法和词法属性的特征,也包括描述源代码反汇编的特征。我们提出了一种将抄袭检测任务作为分类问题来解决的方法。我们通过在包含50个ACM问题和约90k个解决方案的数据集上测试来证明我们的特征集的有效性。训练后的xgboost模型在测试集中得到一个相对二进制f1-score=0.745。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Machine Learning Based Plagiarism Detection in Source Code
Converting source codes to feature vectors can be useful in programming-related tasks, such as plagiarism detection on ACM contests. We present a brand-new method for feature extraction from C++ files, which includes both features describing syntactic and lexical properties of an AST tree and features characterizing disassembly of source code. We propose a method for solving the plagiarism detection task as a classification problem. We prove the effectiveness of our feature set by testing on a dataset that contains 50 ACM problems and ∼90k solutions for them. Trained xgboost model gets a relative binary f1-score=0.745 on the test set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信