{"title":"固有非平稳环境下基于预测的多智能体强化学习","authors":"Andrei Marinescu, Ivana Dusparic, S. Clarke","doi":"10.1145/3070861","DOIUrl":null,"url":null,"abstract":"Multi-agent reinforcement learning (MARL) is a widely researched technique for decentralised control in complex large-scale autonomous systems. Such systems often operate in environments that are continuously evolving and where agents’ actions are non-deterministic, so called inherently non-stationary environments. When there are inconsistent results for agents acting on such an environment, learning and adapting is challenging. In this article, we propose P-MARL, an approach that integrates prediction and pattern change detection abilities into MARL and thus minimises the effect of non-stationarity in the environment. The environment is modelled as a time-series, with future estimates provided using prediction techniques. Learning is based on the predicted environment behaviour, with agents employing this knowledge to improve their performance in realtime. We illustrate P-MARL’s performance in a real-world smart grid scenario, where the environment is heavily influenced by non-stationary power demand patterns from residential consumers. We evaluate P-MARL in three different situations, where agents’ action decisions are independent, simultaneous, and sequential. Results show that all methods outperform traditional MARL, with sequential P-MARL achieving best results.","PeriodicalId":377078,"journal":{"name":"ACM Transactions on Autonomous and Adaptive Systems (TAAS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Prediction-Based Multi-Agent Reinforcement Learning in Inherently Non-Stationary Environments\",\"authors\":\"Andrei Marinescu, Ivana Dusparic, S. Clarke\",\"doi\":\"10.1145/3070861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-agent reinforcement learning (MARL) is a widely researched technique for decentralised control in complex large-scale autonomous systems. Such systems often operate in environments that are continuously evolving and where agents’ actions are non-deterministic, so called inherently non-stationary environments. When there are inconsistent results for agents acting on such an environment, learning and adapting is challenging. In this article, we propose P-MARL, an approach that integrates prediction and pattern change detection abilities into MARL and thus minimises the effect of non-stationarity in the environment. The environment is modelled as a time-series, with future estimates provided using prediction techniques. Learning is based on the predicted environment behaviour, with agents employing this knowledge to improve their performance in realtime. We illustrate P-MARL’s performance in a real-world smart grid scenario, where the environment is heavily influenced by non-stationary power demand patterns from residential consumers. We evaluate P-MARL in three different situations, where agents’ action decisions are independent, simultaneous, and sequential. Results show that all methods outperform traditional MARL, with sequential P-MARL achieving best results.\",\"PeriodicalId\":377078,\"journal\":{\"name\":\"ACM Transactions on Autonomous and Adaptive Systems (TAAS)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Autonomous and Adaptive Systems (TAAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3070861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Autonomous and Adaptive Systems (TAAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3070861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction-Based Multi-Agent Reinforcement Learning in Inherently Non-Stationary Environments
Multi-agent reinforcement learning (MARL) is a widely researched technique for decentralised control in complex large-scale autonomous systems. Such systems often operate in environments that are continuously evolving and where agents’ actions are non-deterministic, so called inherently non-stationary environments. When there are inconsistent results for agents acting on such an environment, learning and adapting is challenging. In this article, we propose P-MARL, an approach that integrates prediction and pattern change detection abilities into MARL and thus minimises the effect of non-stationarity in the environment. The environment is modelled as a time-series, with future estimates provided using prediction techniques. Learning is based on the predicted environment behaviour, with agents employing this knowledge to improve their performance in realtime. We illustrate P-MARL’s performance in a real-world smart grid scenario, where the environment is heavily influenced by non-stationary power demand patterns from residential consumers. We evaluate P-MARL in three different situations, where agents’ action decisions are independent, simultaneous, and sequential. Results show that all methods outperform traditional MARL, with sequential P-MARL achieving best results.