利用互信息有效学习有限混合密度

Padmini Jaikumar, Abhishek Singh, S. Mitra
{"title":"利用互信息有效学习有限混合密度","authors":"Padmini Jaikumar, Abhishek Singh, S. Mitra","doi":"10.1109/ICAPR.2009.91","DOIUrl":null,"url":null,"abstract":"This paper presents a technique of determining the optimum number of components in a mixture model. A count of the number of local maxima in the density of the data is first used to obtain a rough guess of the actual number of components. Mutual Information criteria are then used to judge if components need to be added or removed in order to reach the optimum number. An incremental K-means algorithm is used to add components to the mixture model if required. An obvious advantage of the proposed method is in terms of computational time, as a good guess of the optimum number of components is quickly obtained. The technique has been successfully tested on a variety of univariate as well as bivariate simulated data and the Iris dataset.","PeriodicalId":443926,"journal":{"name":"2009 Seventh International Conference on Advances in Pattern Recognition","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient Learning of Finite Mixture Densities Using Mutual Information\",\"authors\":\"Padmini Jaikumar, Abhishek Singh, S. Mitra\",\"doi\":\"10.1109/ICAPR.2009.91\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a technique of determining the optimum number of components in a mixture model. A count of the number of local maxima in the density of the data is first used to obtain a rough guess of the actual number of components. Mutual Information criteria are then used to judge if components need to be added or removed in order to reach the optimum number. An incremental K-means algorithm is used to add components to the mixture model if required. An obvious advantage of the proposed method is in terms of computational time, as a good guess of the optimum number of components is quickly obtained. The technique has been successfully tested on a variety of univariate as well as bivariate simulated data and the Iris dataset.\",\"PeriodicalId\":443926,\"journal\":{\"name\":\"2009 Seventh International Conference on Advances in Pattern Recognition\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Seventh International Conference on Advances in Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAPR.2009.91\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh International Conference on Advances in Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAPR.2009.91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种确定混合模型中最优组分数量的方法。首先对数据密度中的局部最大值的数量进行计数,以获得对组件的实际数量的粗略猜测。然后使用互信息标准来判断是否需要添加或删除组件以达到最佳数量。如果需要,使用增量K-means算法向混合模型添加组件。该方法的一个明显的优点是在计算时间方面,因为一个很好的猜测组件的最佳数量很快得到。该技术已成功地在各种单变量和双变量模拟数据和Iris数据集上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Learning of Finite Mixture Densities Using Mutual Information
This paper presents a technique of determining the optimum number of components in a mixture model. A count of the number of local maxima in the density of the data is first used to obtain a rough guess of the actual number of components. Mutual Information criteria are then used to judge if components need to be added or removed in order to reach the optimum number. An incremental K-means algorithm is used to add components to the mixture model if required. An obvious advantage of the proposed method is in terms of computational time, as a good guess of the optimum number of components is quickly obtained. The technique has been successfully tested on a variety of univariate as well as bivariate simulated data and the Iris dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信