基于非线性重标法和转换推理的相关目标自信识别

S. Ho, R. Polyak
{"title":"基于非线性重标法和转换推理的相关目标自信识别","authors":"S. Ho, R. Polyak","doi":"10.1109/ICDM.2007.24","DOIUrl":null,"url":null,"abstract":"We present a novel machine learning algorithm to identify relevant objects from a large amount of data. This approach is driven by linear discrimination based on nonlinear rescaling (NR) method and transductive inference. The NR algorithm for linear discrimination (NRLD) computes both the primal and the dual approximation at each step. The dual variables associated with the given labeled data-set provide important information about the objects in the data-set and play the key role in ordering these objects. A confidence score based on a transductive inference procedure using NRLD is used to rank and identify the relevant objects from a pool of unlabeled data. Experimental results on an unbalanced protein data-set for the drug target prioritization and identification problem are used to illustrate the feasibility of the proposed identification algorithm.","PeriodicalId":233758,"journal":{"name":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Confident Identification of Relevant Objects Based on Nonlinear Rescaling Method and Transductive Inference\",\"authors\":\"S. Ho, R. Polyak\",\"doi\":\"10.1109/ICDM.2007.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel machine learning algorithm to identify relevant objects from a large amount of data. This approach is driven by linear discrimination based on nonlinear rescaling (NR) method and transductive inference. The NR algorithm for linear discrimination (NRLD) computes both the primal and the dual approximation at each step. The dual variables associated with the given labeled data-set provide important information about the objects in the data-set and play the key role in ordering these objects. A confidence score based on a transductive inference procedure using NRLD is used to rank and identify the relevant objects from a pool of unlabeled data. Experimental results on an unbalanced protein data-set for the drug target prioritization and identification problem are used to illustrate the feasibility of the proposed identification algorithm.\",\"PeriodicalId\":233758,\"journal\":{\"name\":\"Seventh IEEE International Conference on Data Mining (ICDM 2007)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh IEEE International Conference on Data Mining (ICDM 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2007.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2007.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种新的机器学习算法来从大量数据中识别相关对象。该方法由基于非线性重标度(NR)方法的线性判别和转换推理驱动。线性判别的NR算法(NRLD)在每一步都计算原始近似和对偶近似。与给定的标记数据集相关联的双变量提供了关于数据集中对象的重要信息,并在这些对象的排序中起关键作用。基于使用NRLD的转换推理过程的置信度评分用于从未标记数据池中对相关对象进行排序和识别。在不平衡蛋白质数据集上的实验结果说明了该算法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Confident Identification of Relevant Objects Based on Nonlinear Rescaling Method and Transductive Inference
We present a novel machine learning algorithm to identify relevant objects from a large amount of data. This approach is driven by linear discrimination based on nonlinear rescaling (NR) method and transductive inference. The NR algorithm for linear discrimination (NRLD) computes both the primal and the dual approximation at each step. The dual variables associated with the given labeled data-set provide important information about the objects in the data-set and play the key role in ordering these objects. A confidence score based on a transductive inference procedure using NRLD is used to rank and identify the relevant objects from a pool of unlabeled data. Experimental results on an unbalanced protein data-set for the drug target prioritization and identification problem are used to illustrate the feasibility of the proposed identification algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信