调谐涡轮码

C. Koller, A. Graell i Amat, J. Kliewer, F. Vatta, D. J. Costello
{"title":"调谐涡轮码","authors":"C. Koller, A. Graell i Amat, J. Kliewer, F. Vatta, D. J. Costello","doi":"10.1109/ISITA.2008.4895619","DOIUrl":null,"url":null,"abstract":"As implied by previous studies, there exists a fundamental trade-off between the minimum distance and the iterative decoding convergence behavior of a turbo code. While capacity achieving code ensembles typically are asymptotically bad in the sense that their minimum distance does not grow linearly with block length and they therefore exhibit an error floor at medium to high signal to noise ratios, asymptotically good codes usually converge further away from channel capacity. In this paper we present so-called tuned turbo codes, a family of asymptotically good hybrid concatenated code ensembles, where minimum distance growths and convergence thresholds can be traded-off using a tuning parameter lambda. By decreasing lambda, the asymptotic minimum distance growth rate coefficient is reduced for the sake of improved iterative decoding convergence behavior, and thus the code performance can be tuned to fit the desired application.","PeriodicalId":338675,"journal":{"name":"2008 International Symposium on Information Theory and Its Applications","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Tuned turbo codes\",\"authors\":\"C. Koller, A. Graell i Amat, J. Kliewer, F. Vatta, D. J. Costello\",\"doi\":\"10.1109/ISITA.2008.4895619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As implied by previous studies, there exists a fundamental trade-off between the minimum distance and the iterative decoding convergence behavior of a turbo code. While capacity achieving code ensembles typically are asymptotically bad in the sense that their minimum distance does not grow linearly with block length and they therefore exhibit an error floor at medium to high signal to noise ratios, asymptotically good codes usually converge further away from channel capacity. In this paper we present so-called tuned turbo codes, a family of asymptotically good hybrid concatenated code ensembles, where minimum distance growths and convergence thresholds can be traded-off using a tuning parameter lambda. By decreasing lambda, the asymptotic minimum distance growth rate coefficient is reduced for the sake of improved iterative decoding convergence behavior, and thus the code performance can be tuned to fit the desired application.\",\"PeriodicalId\":338675,\"journal\":{\"name\":\"2008 International Symposium on Information Theory and Its Applications\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Symposium on Information Theory and Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISITA.2008.4895619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on Information Theory and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISITA.2008.4895619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

以往的研究表明,turbo码的最小距离与迭代译码收敛性之间存在着一种基本的权衡。虽然实现代码集成的容量通常是渐近差的,因为它们的最小距离不随块长度线性增长,因此它们在中高信噪比时表现出错误底限,但渐近好的代码通常会在远离信道容量的地方收敛。在本文中,我们提出了所谓的调谐turbo码,这是一类渐近良好的混合串联码集成,其中最小距离增长和收敛阈值可以使用调谐参数lambda进行权衡。通过减小lambda,可以减小渐近最小距离增长率系数,从而提高迭代译码的收敛性,从而调整码的性能以适应期望的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tuned turbo codes
As implied by previous studies, there exists a fundamental trade-off between the minimum distance and the iterative decoding convergence behavior of a turbo code. While capacity achieving code ensembles typically are asymptotically bad in the sense that their minimum distance does not grow linearly with block length and they therefore exhibit an error floor at medium to high signal to noise ratios, asymptotically good codes usually converge further away from channel capacity. In this paper we present so-called tuned turbo codes, a family of asymptotically good hybrid concatenated code ensembles, where minimum distance growths and convergence thresholds can be traded-off using a tuning parameter lambda. By decreasing lambda, the asymptotic minimum distance growth rate coefficient is reduced for the sake of improved iterative decoding convergence behavior, and thus the code performance can be tuned to fit the desired application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信