带惯性的塑性最优控制

S. Walther
{"title":"带惯性的塑性最优控制","authors":"S. Walther","doi":"10.46298/jnsao-2021-7156","DOIUrl":null,"url":null,"abstract":"The paper is concerned with an optimal control problem governed by the\nequations of elasto plasticity with linear kinematic hardening and the inertia\nterm at small strain. The objective is to optimize the displacement field and\nplastic strain by controlling volume forces. The idea given in [10] is used to\ntransform the state equation into an evolution variational inequality (EVI)\ninvolving a certain maximal monotone operator. Results from [27] are then used\nto analyze the EVI. A regularization is obtained via the Yosida approximation\nof the maximal monotone operator, this approximation is smoothed further to\nderive optimality conditions for the smoothed optimal control problem.","PeriodicalId":250939,"journal":{"name":"Journal of Nonsmooth Analysis and Optimization","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Control of Plasticity with Inertia\",\"authors\":\"S. Walther\",\"doi\":\"10.46298/jnsao-2021-7156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper is concerned with an optimal control problem governed by the\\nequations of elasto plasticity with linear kinematic hardening and the inertia\\nterm at small strain. The objective is to optimize the displacement field and\\nplastic strain by controlling volume forces. The idea given in [10] is used to\\ntransform the state equation into an evolution variational inequality (EVI)\\ninvolving a certain maximal monotone operator. Results from [27] are then used\\nto analyze the EVI. A regularization is obtained via the Yosida approximation\\nof the maximal monotone operator, this approximation is smoothed further to\\nderive optimality conditions for the smoothed optimal control problem.\",\"PeriodicalId\":250939,\"journal\":{\"name\":\"Journal of Nonsmooth Analysis and Optimization\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonsmooth Analysis and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/jnsao-2021-7156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonsmooth Analysis and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/jnsao-2021-7156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有线性运动硬化的弹塑性方程和小应变下的惯性项的最优控制问题。目的是通过控制体积力来优化位移场和塑性应变。利用[10]中给出的思想,将状态方程转化为包含某极大单调算子的演化变分不等式(EVI)。然后使用[27]的结果来分析EVI。通过最大单调算子的Yosida近似得到正则化,进一步对该近似进行平滑,得到光滑最优控制问题的最优性条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Control of Plasticity with Inertia
The paper is concerned with an optimal control problem governed by the equations of elasto plasticity with linear kinematic hardening and the inertia term at small strain. The objective is to optimize the displacement field and plastic strain by controlling volume forces. The idea given in [10] is used to transform the state equation into an evolution variational inequality (EVI) involving a certain maximal monotone operator. Results from [27] are then used to analyze the EVI. A regularization is obtained via the Yosida approximation of the maximal monotone operator, this approximation is smoothed further to derive optimality conditions for the smoothed optimal control problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信