解分散最优控制问题的神经逼近器

M. Baglietto, T. Parisini, R. Zoppoli
{"title":"解分散最优控制问题的神经逼近器","authors":"M. Baglietto, T. Parisini, R. Zoppoli","doi":"10.1109/ISIC.1999.796651","DOIUrl":null,"url":null,"abstract":"There are many situations, in engineering and economic systems, where several decision makers (DMs), sharing different information patterns, cooperate to the accomplishment of a common goal. We address an approximate technique consisting in constraining the control functions to have a fixed structure (we chose feedforward neural networks). We are then able to obtain solutions that approximate the optimal ones within any desired degree of accuracy under very general conditions. Such a technique has proved to be effective in non-LQG classical optimal control and in team problems not solvable analytically.","PeriodicalId":300130,"journal":{"name":"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural approximators for the solution of decentralized optimal control problems\",\"authors\":\"M. Baglietto, T. Parisini, R. Zoppoli\",\"doi\":\"10.1109/ISIC.1999.796651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are many situations, in engineering and economic systems, where several decision makers (DMs), sharing different information patterns, cooperate to the accomplishment of a common goal. We address an approximate technique consisting in constraining the control functions to have a fixed structure (we chose feedforward neural networks). We are then able to obtain solutions that approximate the optimal ones within any desired degree of accuracy under very general conditions. Such a technique has proved to be effective in non-LQG classical optimal control and in team problems not solvable analytically.\",\"PeriodicalId\":300130,\"journal\":{\"name\":\"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.1999.796651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1999.796651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在工程和经济系统中,有许多情况下,几个决策者(dm)共享不同的信息模式,为实现共同目标而合作。我们解决了一种近似技术,包括约束控制函数具有固定结构(我们选择了前馈神经网络)。然后,我们能够在非常一般的条件下,在任何期望的精度范围内获得近似于最优解的解。该方法在非lqg经典最优控制和不可解析解的团队问题中是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural approximators for the solution of decentralized optimal control problems
There are many situations, in engineering and economic systems, where several decision makers (DMs), sharing different information patterns, cooperate to the accomplishment of a common goal. We address an approximate technique consisting in constraining the control functions to have a fixed structure (we chose feedforward neural networks). We are then able to obtain solutions that approximate the optimal ones within any desired degree of accuracy under very general conditions. Such a technique has proved to be effective in non-LQG classical optimal control and in team problems not solvable analytically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信