基于WordNet投影的上下词关系自动提取

Congcong Zhang, Gaofei Xie, Ning Liu, Xiaojie Hu, Yatian Shen, Xiajiong Shen
{"title":"基于WordNet投影的上下词关系自动提取","authors":"Congcong Zhang, Gaofei Xie, Ning Liu, Xiaojie Hu, Yatian Shen, Xiajiong Shen","doi":"10.1109/icsai53574.2021.9664140","DOIUrl":null,"url":null,"abstract":"Semantic taxonomies such as WordNet are expensive to build manually. Based on the above ideas and problems, in this paper, we propose a new model for automatically extracting hypernym-hyponym relations from raw text. Our model is based on two scoring functions, one neural networks model for sentence including word pair and the other model used projection network, which learns semantic distance to noun pairs in semantic hierarchy of WordNet. At last, sum of two score is used to classify hypernym-hyponym relation from raw text. On the experimental tasks about hypernym-hyponym relation extraction, our methods get about the result of 0.82 F1-score.","PeriodicalId":131284,"journal":{"name":"2021 7th International Conference on Systems and Informatics (ICSAI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic Hypernym-Hyponym Relation Extraction With WordNet Projection\",\"authors\":\"Congcong Zhang, Gaofei Xie, Ning Liu, Xiaojie Hu, Yatian Shen, Xiajiong Shen\",\"doi\":\"10.1109/icsai53574.2021.9664140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic taxonomies such as WordNet are expensive to build manually. Based on the above ideas and problems, in this paper, we propose a new model for automatically extracting hypernym-hyponym relations from raw text. Our model is based on two scoring functions, one neural networks model for sentence including word pair and the other model used projection network, which learns semantic distance to noun pairs in semantic hierarchy of WordNet. At last, sum of two score is used to classify hypernym-hyponym relation from raw text. On the experimental tasks about hypernym-hyponym relation extraction, our methods get about the result of 0.82 F1-score.\",\"PeriodicalId\":131284,\"journal\":{\"name\":\"2021 7th International Conference on Systems and Informatics (ICSAI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 7th International Conference on Systems and Informatics (ICSAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icsai53574.2021.9664140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Systems and Informatics (ICSAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icsai53574.2021.9664140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

手动构建WordNet等语义分类法的成本很高。基于以上的思路和问题,本文提出了一种从原始文本中自动提取上下词关系的新模型。我们的模型基于两个评分函数,一个神经网络模型对包含词对的句子进行评分,另一个模型使用投影网络来学习WordNet语义层次中名词对的语义距离。最后,利用两个分数的总和对原始文本中的上下义关系进行分类。在上下义关系提取的实验任务上,我们的方法得到了0.82 f1分的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Hypernym-Hyponym Relation Extraction With WordNet Projection
Semantic taxonomies such as WordNet are expensive to build manually. Based on the above ideas and problems, in this paper, we propose a new model for automatically extracting hypernym-hyponym relations from raw text. Our model is based on two scoring functions, one neural networks model for sentence including word pair and the other model used projection network, which learns semantic distance to noun pairs in semantic hierarchy of WordNet. At last, sum of two score is used to classify hypernym-hyponym relation from raw text. On the experimental tasks about hypernym-hyponym relation extraction, our methods get about the result of 0.82 F1-score.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信