在城市环境中自动驾驶地面车辆的实用轨迹规划框架

Xiaohui Li, Zhenping Sun, Zhen He, Q. Zhu, Daxue Liu
{"title":"在城市环境中自动驾驶地面车辆的实用轨迹规划框架","authors":"Xiaohui Li, Zhenping Sun, Zhen He, Q. Zhu, Daxue Liu","doi":"10.1109/IVS.2015.7225840","DOIUrl":null,"url":null,"abstract":"This paper presents a practical trajectory planning framework towards fully autonomous driving in urban environments. Firstly, based on the behavioral decision commands, a reference path is extracted from the digital map using the LIDAR-based localization information. The reference path is refined and interpolated via a nonlinear optimization algorithm and a parametric algorithm, respectively. Secondly, the trajectory planning task is decomposed into spatial path planning and velocity profile planning. A closed-form algorithm is employed to generate a rich set of kinematically-feasible spatial path candidates within the curvilinear coordinate framework. At the same time, the velocity planning algorithm is performed with considering safety and smoothness constraints. The trajectory candidates are evaluated by a carefully developed objective function. Subsequently, the best collision-free and dynamically-feasible trajectory is selected and executed by the trajectory tracking controller. We implemented the proposed trajectory planning strategy on our test autonomous vehicle in the realistic urban traffic scenarios. Experimental results demonstrated its capability and efficiency to handle a variety of driving situations, such as lane keeping, lane changing, vehicle following, and static and dynamic obstacles avoiding, while respecting traffic regulations.","PeriodicalId":294701,"journal":{"name":"2015 IEEE Intelligent Vehicles Symposium (IV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"A practical trajectory planning framework for autonomous ground vehicles driving in urban environments\",\"authors\":\"Xiaohui Li, Zhenping Sun, Zhen He, Q. Zhu, Daxue Liu\",\"doi\":\"10.1109/IVS.2015.7225840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a practical trajectory planning framework towards fully autonomous driving in urban environments. Firstly, based on the behavioral decision commands, a reference path is extracted from the digital map using the LIDAR-based localization information. The reference path is refined and interpolated via a nonlinear optimization algorithm and a parametric algorithm, respectively. Secondly, the trajectory planning task is decomposed into spatial path planning and velocity profile planning. A closed-form algorithm is employed to generate a rich set of kinematically-feasible spatial path candidates within the curvilinear coordinate framework. At the same time, the velocity planning algorithm is performed with considering safety and smoothness constraints. The trajectory candidates are evaluated by a carefully developed objective function. Subsequently, the best collision-free and dynamically-feasible trajectory is selected and executed by the trajectory tracking controller. We implemented the proposed trajectory planning strategy on our test autonomous vehicle in the realistic urban traffic scenarios. Experimental results demonstrated its capability and efficiency to handle a variety of driving situations, such as lane keeping, lane changing, vehicle following, and static and dynamic obstacles avoiding, while respecting traffic regulations.\",\"PeriodicalId\":294701,\"journal\":{\"name\":\"2015 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2015.7225840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2015.7225840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

本文提出了一种面向城市环境中全自动驾驶的实用轨迹规划框架。首先,根据行为决策命令,利用基于激光雷达的定位信息从数字地图中提取参考路径;参考路径分别通过非线性优化算法和参数化算法进行细化和插值。其次,将轨迹规划任务分解为空间路径规划和速度剖面规划;采用封闭算法在曲线坐标框架内生成丰富的运动可行空间路径候选集。同时,在考虑安全性和平滑性约束的情况下,进行了速度规划算法。候选轨迹通过精心开发的目标函数进行评估。然后,选择无碰撞且动态可行的最佳轨迹,由轨迹跟踪控制器执行。我们在真实的城市交通场景中对测试自动驾驶汽车实施了所提出的轨迹规划策略。实验结果表明,在遵守交通规则的前提下,该系统能够有效地处理各种驾驶情况,如保持车道、变道、车辆跟随、静态和动态避障等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A practical trajectory planning framework for autonomous ground vehicles driving in urban environments
This paper presents a practical trajectory planning framework towards fully autonomous driving in urban environments. Firstly, based on the behavioral decision commands, a reference path is extracted from the digital map using the LIDAR-based localization information. The reference path is refined and interpolated via a nonlinear optimization algorithm and a parametric algorithm, respectively. Secondly, the trajectory planning task is decomposed into spatial path planning and velocity profile planning. A closed-form algorithm is employed to generate a rich set of kinematically-feasible spatial path candidates within the curvilinear coordinate framework. At the same time, the velocity planning algorithm is performed with considering safety and smoothness constraints. The trajectory candidates are evaluated by a carefully developed objective function. Subsequently, the best collision-free and dynamically-feasible trajectory is selected and executed by the trajectory tracking controller. We implemented the proposed trajectory planning strategy on our test autonomous vehicle in the realistic urban traffic scenarios. Experimental results demonstrated its capability and efficiency to handle a variety of driving situations, such as lane keeping, lane changing, vehicle following, and static and dynamic obstacles avoiding, while respecting traffic regulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信