D. Cartes, J. Chow, D. McCaugherty, S. Widergren, G. Venayagamoorthy
{"title":"IEEE计算机协会智能电网视觉项目为计算智能提供了机会","authors":"D. Cartes, J. Chow, D. McCaugherty, S. Widergren, G. Venayagamoorthy","doi":"10.1109/EAIS.2013.6604117","DOIUrl":null,"url":null,"abstract":"The IEEE Computer Society Smart Grid Vision Project (CS-SGVP) was chartered to develop Smart Grid visions looking forward as far as 30 years into the future. At the completion of the project it was realized that to address the complexity of a Smart Grid with vast numbers of intelligent connected devices and systems, computational intelligence techniques must move from top-down to the lowest levels of architectures, with interactive cooperation between smart components, each with a level of autonomy. The CS-SGVP team emphasized creative thought leadership and “blue sky” thinking to identify future Smart Grid operational visions and the role of computing to achieve these visions. The CS-SGVP team developed its visions using a three-tiered approach. Architectural concepts describe Smart Grid goals and characteristics, general grid types, as well as computing concepts considered common across grid types. Functional concepts describe how the grid will operate. Technological concepts describe the roles of certain technologies within the Smart Grid. The CS-SGVP expects that over the course of many years, various visions will come to fruition.","PeriodicalId":289995,"journal":{"name":"2013 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The IEEE Computer Society Smart Grid Vision Project opens opportunites for computational intelligence\",\"authors\":\"D. Cartes, J. Chow, D. McCaugherty, S. Widergren, G. Venayagamoorthy\",\"doi\":\"10.1109/EAIS.2013.6604117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The IEEE Computer Society Smart Grid Vision Project (CS-SGVP) was chartered to develop Smart Grid visions looking forward as far as 30 years into the future. At the completion of the project it was realized that to address the complexity of a Smart Grid with vast numbers of intelligent connected devices and systems, computational intelligence techniques must move from top-down to the lowest levels of architectures, with interactive cooperation between smart components, each with a level of autonomy. The CS-SGVP team emphasized creative thought leadership and “blue sky” thinking to identify future Smart Grid operational visions and the role of computing to achieve these visions. The CS-SGVP team developed its visions using a three-tiered approach. Architectural concepts describe Smart Grid goals and characteristics, general grid types, as well as computing concepts considered common across grid types. Functional concepts describe how the grid will operate. Technological concepts describe the roles of certain technologies within the Smart Grid. The CS-SGVP expects that over the course of many years, various visions will come to fruition.\",\"PeriodicalId\":289995,\"journal\":{\"name\":\"2013 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EAIS.2013.6604117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EAIS.2013.6604117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The IEEE Computer Society Smart Grid Vision Project opens opportunites for computational intelligence
The IEEE Computer Society Smart Grid Vision Project (CS-SGVP) was chartered to develop Smart Grid visions looking forward as far as 30 years into the future. At the completion of the project it was realized that to address the complexity of a Smart Grid with vast numbers of intelligent connected devices and systems, computational intelligence techniques must move from top-down to the lowest levels of architectures, with interactive cooperation between smart components, each with a level of autonomy. The CS-SGVP team emphasized creative thought leadership and “blue sky” thinking to identify future Smart Grid operational visions and the role of computing to achieve these visions. The CS-SGVP team developed its visions using a three-tiered approach. Architectural concepts describe Smart Grid goals and characteristics, general grid types, as well as computing concepts considered common across grid types. Functional concepts describe how the grid will operate. Technological concepts describe the roles of certain technologies within the Smart Grid. The CS-SGVP expects that over the course of many years, various visions will come to fruition.