{"title":"利用主方程对单电子晶体管进行数值模拟","authors":"R. Nuryadi, A. Haryono","doi":"10.1117/12.862848","DOIUrl":null,"url":null,"abstract":"In this work, simulation technique for single electron transistor (SET) based on master equation is presented. The SET is modeled as a circuit consisting of two tunnel junctions, one non-tunnel junction and two voltage sources of gate voltage and drain voltage. A tunneling electron is described as a discrete charge due to stochastic nature of a tunneling event. Simulated source-drain current versus drain voltage characteristics show the staircase behavior, while source-drain current is a periodic function of the gate voltage. Coulomb diamond region is also found, which means that the SET operation is based on single electron tunneling. These results reproduce the previous studies of the SET, indicating that the simulation technique achieves good accuration. Such simulation method is also useful in the application of single electron turnstile, single electron pump and the other more complex multiple tunnel junction circuits.","PeriodicalId":245973,"journal":{"name":"Southeast Asian International Advances in Micro/Nano-technology","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical simulation of single electron transistor using master equation\",\"authors\":\"R. Nuryadi, A. Haryono\",\"doi\":\"10.1117/12.862848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, simulation technique for single electron transistor (SET) based on master equation is presented. The SET is modeled as a circuit consisting of two tunnel junctions, one non-tunnel junction and two voltage sources of gate voltage and drain voltage. A tunneling electron is described as a discrete charge due to stochastic nature of a tunneling event. Simulated source-drain current versus drain voltage characteristics show the staircase behavior, while source-drain current is a periodic function of the gate voltage. Coulomb diamond region is also found, which means that the SET operation is based on single electron tunneling. These results reproduce the previous studies of the SET, indicating that the simulation technique achieves good accuration. Such simulation method is also useful in the application of single electron turnstile, single electron pump and the other more complex multiple tunnel junction circuits.\",\"PeriodicalId\":245973,\"journal\":{\"name\":\"Southeast Asian International Advances in Micro/Nano-technology\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Southeast Asian International Advances in Micro/Nano-technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.862848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Southeast Asian International Advances in Micro/Nano-technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.862848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical simulation of single electron transistor using master equation
In this work, simulation technique for single electron transistor (SET) based on master equation is presented. The SET is modeled as a circuit consisting of two tunnel junctions, one non-tunnel junction and two voltage sources of gate voltage and drain voltage. A tunneling electron is described as a discrete charge due to stochastic nature of a tunneling event. Simulated source-drain current versus drain voltage characteristics show the staircase behavior, while source-drain current is a periodic function of the gate voltage. Coulomb diamond region is also found, which means that the SET operation is based on single electron tunneling. These results reproduce the previous studies of the SET, indicating that the simulation technique achieves good accuration. Such simulation method is also useful in the application of single electron turnstile, single electron pump and the other more complex multiple tunnel junction circuits.