{"title":"使用可复制性度量评估时间持久性","authors":"Jüri Keller, Timo Breuer, Philipp Schaer","doi":"10.48550/arXiv.2308.10549","DOIUrl":null,"url":null,"abstract":"In real-world Information Retrieval (IR) experiments, the Evaluation Environment (EE) is exposed to constant change. Documents are added, removed, or updated, and the information need and the search behavior of users is evolving. Simultaneously, IR systems are expected to retain a consistent quality. The LongEval Lab seeks to investigate the longitudinal persistence of IR systems, and in this work, we describe our participation. We submitted runs of five advanced retrieval systems, namely a Reciprocal Rank Fusion (RRF) approach, ColBERT, monoT5, Doc2Query, and E5, to both sub-tasks. Further, we cast the longitudinal evaluation as a replicability study to better understand the temporal change observed. As a result, we quantify the persistence of the submitted runs and see great potential in this evaluation method.","PeriodicalId":232729,"journal":{"name":"Conference and Labs of the Evaluation Forum","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating Temporal Persistence Using Replicability Measures\",\"authors\":\"Jüri Keller, Timo Breuer, Philipp Schaer\",\"doi\":\"10.48550/arXiv.2308.10549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In real-world Information Retrieval (IR) experiments, the Evaluation Environment (EE) is exposed to constant change. Documents are added, removed, or updated, and the information need and the search behavior of users is evolving. Simultaneously, IR systems are expected to retain a consistent quality. The LongEval Lab seeks to investigate the longitudinal persistence of IR systems, and in this work, we describe our participation. We submitted runs of five advanced retrieval systems, namely a Reciprocal Rank Fusion (RRF) approach, ColBERT, monoT5, Doc2Query, and E5, to both sub-tasks. Further, we cast the longitudinal evaluation as a replicability study to better understand the temporal change observed. As a result, we quantify the persistence of the submitted runs and see great potential in this evaluation method.\",\"PeriodicalId\":232729,\"journal\":{\"name\":\"Conference and Labs of the Evaluation Forum\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference and Labs of the Evaluation Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2308.10549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference and Labs of the Evaluation Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2308.10549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluating Temporal Persistence Using Replicability Measures
In real-world Information Retrieval (IR) experiments, the Evaluation Environment (EE) is exposed to constant change. Documents are added, removed, or updated, and the information need and the search behavior of users is evolving. Simultaneously, IR systems are expected to retain a consistent quality. The LongEval Lab seeks to investigate the longitudinal persistence of IR systems, and in this work, we describe our participation. We submitted runs of five advanced retrieval systems, namely a Reciprocal Rank Fusion (RRF) approach, ColBERT, monoT5, Doc2Query, and E5, to both sub-tasks. Further, we cast the longitudinal evaluation as a replicability study to better understand the temporal change observed. As a result, we quantify the persistence of the submitted runs and see great potential in this evaluation method.