{"title":"用于嵌入式多媒体应用的2路VLIW处理器体系结构","authors":"Jiyang Kang, Jae-Woo Ahn, Jiyoung Cho, Ki-Il Kum, Wonyong Sung","doi":"10.1109/SIPS.1999.822326","DOIUrl":null,"url":null,"abstract":"As the complexity of multimedia applications increases, the need for efficient and compiler-friendly processor architectures also grows. In this paper, a new multimedia processor architecture is proposed. This processor has a 2-issue VLIW architecture with 64-bit SIMD arithmetic functional units to exploit the instruction-level and subword data parallelism found in multimedia applications. Moreover, densely encoded instructions supporting memory operands, DSP-like addressing modes, and SIMD capability boost the performance while keeping the code size and hardware cost small. To maximally utilize this architecture, a software environment including a code converter, a VLIW compiler system, and a compiled simulator has also been developed. The processor core has been synthesized for LSI logic 0.25 /spl mu/m library, which results in the total gate count of 102 K. In spite of the relatively smaller issue rate, the proposed processor shows a comparable or higher performance in terms of both the cycle count and the code size when compared to the 8-issue TMS320C62xx, for DSP benchmark kernels and an H.263 video encoder.","PeriodicalId":275030,"journal":{"name":"1999 IEEE Workshop on Signal Processing Systems. SiPS 99. Design and Implementation (Cat. No.99TH8461)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A 2 way VLIW processor architecture for embedded multimedia applications\",\"authors\":\"Jiyang Kang, Jae-Woo Ahn, Jiyoung Cho, Ki-Il Kum, Wonyong Sung\",\"doi\":\"10.1109/SIPS.1999.822326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the complexity of multimedia applications increases, the need for efficient and compiler-friendly processor architectures also grows. In this paper, a new multimedia processor architecture is proposed. This processor has a 2-issue VLIW architecture with 64-bit SIMD arithmetic functional units to exploit the instruction-level and subword data parallelism found in multimedia applications. Moreover, densely encoded instructions supporting memory operands, DSP-like addressing modes, and SIMD capability boost the performance while keeping the code size and hardware cost small. To maximally utilize this architecture, a software environment including a code converter, a VLIW compiler system, and a compiled simulator has also been developed. The processor core has been synthesized for LSI logic 0.25 /spl mu/m library, which results in the total gate count of 102 K. In spite of the relatively smaller issue rate, the proposed processor shows a comparable or higher performance in terms of both the cycle count and the code size when compared to the 8-issue TMS320C62xx, for DSP benchmark kernels and an H.263 video encoder.\",\"PeriodicalId\":275030,\"journal\":{\"name\":\"1999 IEEE Workshop on Signal Processing Systems. SiPS 99. Design and Implementation (Cat. No.99TH8461)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1999 IEEE Workshop on Signal Processing Systems. SiPS 99. Design and Implementation (Cat. No.99TH8461)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIPS.1999.822326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 IEEE Workshop on Signal Processing Systems. SiPS 99. Design and Implementation (Cat. No.99TH8461)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPS.1999.822326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 2 way VLIW processor architecture for embedded multimedia applications
As the complexity of multimedia applications increases, the need for efficient and compiler-friendly processor architectures also grows. In this paper, a new multimedia processor architecture is proposed. This processor has a 2-issue VLIW architecture with 64-bit SIMD arithmetic functional units to exploit the instruction-level and subword data parallelism found in multimedia applications. Moreover, densely encoded instructions supporting memory operands, DSP-like addressing modes, and SIMD capability boost the performance while keeping the code size and hardware cost small. To maximally utilize this architecture, a software environment including a code converter, a VLIW compiler system, and a compiled simulator has also been developed. The processor core has been synthesized for LSI logic 0.25 /spl mu/m library, which results in the total gate count of 102 K. In spite of the relatively smaller issue rate, the proposed processor shows a comparable or higher performance in terms of both the cycle count and the code size when compared to the 8-issue TMS320C62xx, for DSP benchmark kernels and an H.263 video encoder.