基于多任务卷积神经网络的服装属性描述与检索

Y. Xia, Baitong Chen, Wenjin Lu, Frans Coenen, Bailing Zhang
{"title":"基于多任务卷积神经网络的服装属性描述与检索","authors":"Y. Xia, Baitong Chen, Wenjin Lu, Frans Coenen, Bailing Zhang","doi":"10.1109/FSKD.2017.8393378","DOIUrl":null,"url":null,"abstract":"This paper seek answer to question how to search clothing when consumer pays attention to a part of clothing. A novel framework is proposed to solve above problem by attributes. First of all, Fast-RCNN detects person from complex background. Then a Convolutional Neural Network (CNN) is combined with Multi-Task Learning (MTL) to extract features related to attributes. Next Principal Component Analysis (PCA) reduce dimensionality of feature from CNN. Finally, Locality Sensitive Hashing (LSH) searches similar samples in the gallery. Extensive experiments were done on the clothing attribute dataset, experimental results proves this framework is effective.","PeriodicalId":236093,"journal":{"name":"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Attributes-oriented clothing description and retrieval with multi-task convolutional neural network\",\"authors\":\"Y. Xia, Baitong Chen, Wenjin Lu, Frans Coenen, Bailing Zhang\",\"doi\":\"10.1109/FSKD.2017.8393378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper seek answer to question how to search clothing when consumer pays attention to a part of clothing. A novel framework is proposed to solve above problem by attributes. First of all, Fast-RCNN detects person from complex background. Then a Convolutional Neural Network (CNN) is combined with Multi-Task Learning (MTL) to extract features related to attributes. Next Principal Component Analysis (PCA) reduce dimensionality of feature from CNN. Finally, Locality Sensitive Hashing (LSH) searches similar samples in the gallery. Extensive experiments were done on the clothing attribute dataset, experimental results proves this framework is effective.\",\"PeriodicalId\":236093,\"journal\":{\"name\":\"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FSKD.2017.8393378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2017.8393378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文试图回答消费者在关注服装的某一部分时如何搜索服装的问题。提出了一种新的基于属性的框架来解决上述问题。首先,Fast-RCNN从复杂的背景中识别人。然后将卷积神经网络(CNN)与多任务学习(MTL)相结合,提取与属性相关的特征。其次,主成分分析(PCA)对CNN的特征进行降维。最后,局部敏感散列(LSH)在库中搜索相似的样本。在服装属性数据集上进行了大量的实验,实验结果证明了该框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attributes-oriented clothing description and retrieval with multi-task convolutional neural network
This paper seek answer to question how to search clothing when consumer pays attention to a part of clothing. A novel framework is proposed to solve above problem by attributes. First of all, Fast-RCNN detects person from complex background. Then a Convolutional Neural Network (CNN) is combined with Multi-Task Learning (MTL) to extract features related to attributes. Next Principal Component Analysis (PCA) reduce dimensionality of feature from CNN. Finally, Locality Sensitive Hashing (LSH) searches similar samples in the gallery. Extensive experiments were done on the clothing attribute dataset, experimental results proves this framework is effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信