LVCSR的参数轨迹混合

M. Siu, R. Iyer, H. Gish, Carl Quillen
{"title":"LVCSR的参数轨迹混合","authors":"M. Siu, R. Iyer, H. Gish, Carl Quillen","doi":"10.21437/ICSLP.1998-685","DOIUrl":null,"url":null,"abstract":"Parametric trajectory models explicitly represent the temporal evolution of the speech features as a Gaussian process with time-varying parameters. HMMs are a special case of such models, one in which the trajectory constraints in the speech segment are ignored by the assumption of conditional independence across frames within the segment. In this paper, we investigate in detail some extensions to our trajectory modeling approach aimed at improving LVCSR performance: (i) improved modeling of mixtures of trajectories via better initialization, (ii) modeling of context dependence, and (iii) improved segment boundaries by means of search. We will present results in terms of both phone classi cation and recognition accuracy on the Switchboard corpus.","PeriodicalId":117113,"journal":{"name":"5th International Conference on Spoken Language Processing (ICSLP 1998)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Parametric trajectory mixtures for LVCSR\",\"authors\":\"M. Siu, R. Iyer, H. Gish, Carl Quillen\",\"doi\":\"10.21437/ICSLP.1998-685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parametric trajectory models explicitly represent the temporal evolution of the speech features as a Gaussian process with time-varying parameters. HMMs are a special case of such models, one in which the trajectory constraints in the speech segment are ignored by the assumption of conditional independence across frames within the segment. In this paper, we investigate in detail some extensions to our trajectory modeling approach aimed at improving LVCSR performance: (i) improved modeling of mixtures of trajectories via better initialization, (ii) modeling of context dependence, and (iii) improved segment boundaries by means of search. We will present results in terms of both phone classi cation and recognition accuracy on the Switchboard corpus.\",\"PeriodicalId\":117113,\"journal\":{\"name\":\"5th International Conference on Spoken Language Processing (ICSLP 1998)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"5th International Conference on Spoken Language Processing (ICSLP 1998)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/ICSLP.1998-685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Spoken Language Processing (ICSLP 1998)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/ICSLP.1998-685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

参数轨迹模型明确地将语音特征的时间演化表示为具有时变参数的高斯过程。hmm是这种模型的一种特殊情况,在这种模型中,语音片段中的轨迹约束被忽略,因为它假设了语音片段内帧之间的条件独立。在本文中,我们详细研究了我们的轨迹建模方法的一些扩展,旨在提高LVCSR的性能:(i)通过更好的初始化改进轨迹混合的建模,(ii)通过上下文依赖性建模,以及(iii)通过搜索改进段边界。我们将在总机语料库上展示电话分类和识别准确性方面的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parametric trajectory mixtures for LVCSR
Parametric trajectory models explicitly represent the temporal evolution of the speech features as a Gaussian process with time-varying parameters. HMMs are a special case of such models, one in which the trajectory constraints in the speech segment are ignored by the assumption of conditional independence across frames within the segment. In this paper, we investigate in detail some extensions to our trajectory modeling approach aimed at improving LVCSR performance: (i) improved modeling of mixtures of trajectories via better initialization, (ii) modeling of context dependence, and (iii) improved segment boundaries by means of search. We will present results in terms of both phone classi cation and recognition accuracy on the Switchboard corpus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信