{"title":"时变自回归系统的小波辨识","authors":"Yuanjin Zheng, Zhiping Lin","doi":"10.1109/ICASSP.2000.862046","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of time-varying parametric autoregressive (AR) model identification by wavelets is discussed. Firstly, we derive multiresolution least squares (MLS) algorithm Gaussian time-varying AR model identification employing wavelet operator matrix representation. This method can optimally balance between the over-fitted solution and the poorly represented estimation. Utilizing multiresolution analysis techniques, the smooth trends and the rapidly changing components of time-varying AR model parameters can both be estimated accurately. Then, the proposed MLS algorithm is combined with the total least squares algorithm for noisy time-varying AR model identification. Simulation results verify the effectiveness of our algorithms.","PeriodicalId":164817,"journal":{"name":"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Time-varying autoregressive system identification using wavelets\",\"authors\":\"Yuanjin Zheng, Zhiping Lin\",\"doi\":\"10.1109/ICASSP.2000.862046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the problem of time-varying parametric autoregressive (AR) model identification by wavelets is discussed. Firstly, we derive multiresolution least squares (MLS) algorithm Gaussian time-varying AR model identification employing wavelet operator matrix representation. This method can optimally balance between the over-fitted solution and the poorly represented estimation. Utilizing multiresolution analysis techniques, the smooth trends and the rapidly changing components of time-varying AR model parameters can both be estimated accurately. Then, the proposed MLS algorithm is combined with the total least squares algorithm for noisy time-varying AR model identification. Simulation results verify the effectiveness of our algorithms.\",\"PeriodicalId\":164817,\"journal\":{\"name\":\"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2000.862046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2000.862046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Time-varying autoregressive system identification using wavelets
In this paper, the problem of time-varying parametric autoregressive (AR) model identification by wavelets is discussed. Firstly, we derive multiresolution least squares (MLS) algorithm Gaussian time-varying AR model identification employing wavelet operator matrix representation. This method can optimally balance between the over-fitted solution and the poorly represented estimation. Utilizing multiresolution analysis techniques, the smooth trends and the rapidly changing components of time-varying AR model parameters can both be estimated accurately. Then, the proposed MLS algorithm is combined with the total least squares algorithm for noisy time-varying AR model identification. Simulation results verify the effectiveness of our algorithms.