{"title":"基于情感分析和k - media聚类的电子商务数据意见挖掘","authors":"U. Rahardja, T. Hariguna, Wiga Maaulana Baihaqi","doi":"10.1109/Ubi-Media.2019.00040","DOIUrl":null,"url":null,"abstract":"This study aimed to analyze sentiment opinions to find out the opinions of users on an e-commerce Web. The method used was through analyzing text reviews obtained from customers on an e-commerce website. The algorithm used was k-medoid clustering.","PeriodicalId":259542,"journal":{"name":"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Opinion Mining on E-Commerce Data Using Sentiment Analysis and K-Medoid Clustering\",\"authors\":\"U. Rahardja, T. Hariguna, Wiga Maaulana Baihaqi\",\"doi\":\"10.1109/Ubi-Media.2019.00040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aimed to analyze sentiment opinions to find out the opinions of users on an e-commerce Web. The method used was through analyzing text reviews obtained from customers on an e-commerce website. The algorithm used was k-medoid clustering.\",\"PeriodicalId\":259542,\"journal\":{\"name\":\"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Ubi-Media.2019.00040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Ubi-Media.2019.00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Opinion Mining on E-Commerce Data Using Sentiment Analysis and K-Medoid Clustering
This study aimed to analyze sentiment opinions to find out the opinions of users on an e-commerce Web. The method used was through analyzing text reviews obtained from customers on an e-commerce website. The algorithm used was k-medoid clustering.