一种可伸缩混合稀疏求解器

E. Ng, P. Raghavan
{"title":"一种可伸缩混合稀疏求解器","authors":"E. Ng, P. Raghavan","doi":"10.1002/(SICI)1096-9128(200002/03)12:2/3%3C53::AID-CPE473%3E3.0.CO;2-B","DOIUrl":null,"url":null,"abstract":"Consider the solution of very large, sparse linear systems. The most popular techniques can be broadly classified as either direct or iterative. When the sparse matrix is symmetric and positive definite, direct methods use Cholesky factorization while iterative methods rely on Conjugate Gradients. Our goal is to develop a scalable and memory-efficient hybrid of the two methods that can be implemented with high efficiency on both serial and parallel computers and be suitable for a wide range of problems. We discuss our overall design with emphasis on performance and scalability issues, and report on progress to date.","PeriodicalId":199059,"journal":{"name":"Concurr. Pract. Exp.","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Towards a Scalable Hybrid Sparse Solver\",\"authors\":\"E. Ng, P. Raghavan\",\"doi\":\"10.1002/(SICI)1096-9128(200002/03)12:2/3%3C53::AID-CPE473%3E3.0.CO;2-B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider the solution of very large, sparse linear systems. The most popular techniques can be broadly classified as either direct or iterative. When the sparse matrix is symmetric and positive definite, direct methods use Cholesky factorization while iterative methods rely on Conjugate Gradients. Our goal is to develop a scalable and memory-efficient hybrid of the two methods that can be implemented with high efficiency on both serial and parallel computers and be suitable for a wide range of problems. We discuss our overall design with emphasis on performance and scalability issues, and report on progress to date.\",\"PeriodicalId\":199059,\"journal\":{\"name\":\"Concurr. Pract. Exp.\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concurr. Pract. Exp.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/(SICI)1096-9128(200002/03)12:2/3%3C53::AID-CPE473%3E3.0.CO;2-B\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurr. Pract. Exp.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/(SICI)1096-9128(200002/03)12:2/3%3C53::AID-CPE473%3E3.0.CO;2-B","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

考虑一个非常大的、稀疏的线性系统的解。最流行的技术可以大致分为直接技术和迭代技术。当稀疏矩阵对称且正定时,直接方法使用Cholesky分解,迭代方法依赖共轭梯度。我们的目标是开发一种可扩展且内存高效的两种方法的混合,可以在串行和并行计算机上高效实现,并适用于广泛的问题。我们讨论了我们的整体设计,重点是性能和可伸缩性问题,并报告了迄今为止的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards a Scalable Hybrid Sparse Solver
Consider the solution of very large, sparse linear systems. The most popular techniques can be broadly classified as either direct or iterative. When the sparse matrix is symmetric and positive definite, direct methods use Cholesky factorization while iterative methods rely on Conjugate Gradients. Our goal is to develop a scalable and memory-efficient hybrid of the two methods that can be implemented with high efficiency on both serial and parallel computers and be suitable for a wide range of problems. We discuss our overall design with emphasis on performance and scalability issues, and report on progress to date.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信