{"title":"论knuth对banach火柴盒问题的推广","authors":"W. Dukes, K. Duffy","doi":"10.1353/mpr.2004.0023","DOIUrl":null,"url":null,"abstract":"We revisit a simply stated problem of Knuth. Previous approaches rely on the Bernoulli nature of the underlying stochastic process to recover the systems mean behaviour. We show that limiting results hold for a wide range of stochastic processes. A Large Deviation Principle (LDP) is proved, allowing estimates to be made for the probability of rare-events. From the LDP, a weak law of large numbers is deduced.","PeriodicalId":434988,"journal":{"name":"Mathematical Proceedings of the Royal Irish Academy","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ON KNUTH'S GENERALISATION OF BANACH'S MATCHBOX PROBLEM\",\"authors\":\"W. Dukes, K. Duffy\",\"doi\":\"10.1353/mpr.2004.0023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We revisit a simply stated problem of Knuth. Previous approaches rely on the Bernoulli nature of the underlying stochastic process to recover the systems mean behaviour. We show that limiting results hold for a wide range of stochastic processes. A Large Deviation Principle (LDP) is proved, allowing estimates to be made for the probability of rare-events. From the LDP, a weak law of large numbers is deduced.\",\"PeriodicalId\":434988,\"journal\":{\"name\":\"Mathematical Proceedings of the Royal Irish Academy\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Royal Irish Academy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1353/mpr.2004.0023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Royal Irish Academy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1353/mpr.2004.0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ON KNUTH'S GENERALISATION OF BANACH'S MATCHBOX PROBLEM
We revisit a simply stated problem of Knuth. Previous approaches rely on the Bernoulli nature of the underlying stochastic process to recover the systems mean behaviour. We show that limiting results hold for a wide range of stochastic processes. A Large Deviation Principle (LDP) is proved, allowing estimates to be made for the probability of rare-events. From the LDP, a weak law of large numbers is deduced.