基于熵多样性准则的进化多目标优化模糊集成分类器设计

Y. Nojima, H. Ishibuchi
{"title":"基于熵多样性准则的进化多目标优化模糊集成分类器设计","authors":"Y. Nojima, H. Ishibuchi","doi":"10.1109/HIS.2006.20","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a multi-classifier coding scheme and an entropy-based diversity criterion in evolutionary multiobjective optimization algorithms for the design of fuzzy ensemble classifiers. In a multi-classifier coding scheme, an ensemble classifier is coded as an integer string. Each string is evaluated by using its accuracy and diversity. We use two accuracy criteria. One is the overall classification rate of the string as an ensemble classifier. The other is the average classification rate of component classifiers in the ensemble classifier. As a diversity criterion, we use the entropy of outputs from component classifiers in the ensemble classifier. We examine four formulations based on the above criteria through computational experiments on benchmark data sets in the UCI machine learning repository. The experimental results show the effectiveness of the multi-classifier coding scheme and the entropy-based diversity criterion.","PeriodicalId":150732,"journal":{"name":"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Designing Fuzzy Ensemble Classifiers by Evolutionary Multiobjective Optimization with an Entropy-Based Diversity Criterion\",\"authors\":\"Y. Nojima, H. Ishibuchi\",\"doi\":\"10.1109/HIS.2006.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a multi-classifier coding scheme and an entropy-based diversity criterion in evolutionary multiobjective optimization algorithms for the design of fuzzy ensemble classifiers. In a multi-classifier coding scheme, an ensemble classifier is coded as an integer string. Each string is evaluated by using its accuracy and diversity. We use two accuracy criteria. One is the overall classification rate of the string as an ensemble classifier. The other is the average classification rate of component classifiers in the ensemble classifier. As a diversity criterion, we use the entropy of outputs from component classifiers in the ensemble classifier. We examine four formulations based on the above criteria through computational experiments on benchmark data sets in the UCI machine learning repository. The experimental results show the effectiveness of the multi-classifier coding scheme and the entropy-based diversity criterion.\",\"PeriodicalId\":150732,\"journal\":{\"name\":\"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIS.2006.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2006.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文提出了一种多分类器编码方案和基于熵的进化多目标优化算法多样性准则,用于设计模糊集成分类器。在多分类器编码方案中,集成分类器被编码为整数字符串。每个字符串通过使用其准确性和多样性来评估。我们使用两个精度标准。一是弦作为集合分类器的整体分类率。二是集成分类器中各分量分类器的平均分类率。作为多样性准则,我们在集成分类器中使用组件分类器输出的熵。我们通过在UCI机器学习存储库中的基准数据集上进行计算实验,检查了基于上述标准的四种公式。实验结果表明了多分类器编码方案和基于熵的分集准则的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing Fuzzy Ensemble Classifiers by Evolutionary Multiobjective Optimization with an Entropy-Based Diversity Criterion
In this paper, we propose a multi-classifier coding scheme and an entropy-based diversity criterion in evolutionary multiobjective optimization algorithms for the design of fuzzy ensemble classifiers. In a multi-classifier coding scheme, an ensemble classifier is coded as an integer string. Each string is evaluated by using its accuracy and diversity. We use two accuracy criteria. One is the overall classification rate of the string as an ensemble classifier. The other is the average classification rate of component classifiers in the ensemble classifier. As a diversity criterion, we use the entropy of outputs from component classifiers in the ensemble classifier. We examine four formulations based on the above criteria through computational experiments on benchmark data sets in the UCI machine learning repository. The experimental results show the effectiveness of the multi-classifier coding scheme and the entropy-based diversity criterion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信