显著性检测:一种自适应稀疏表示方法

Gaoxiang Zhang, F. Jiang, Debin Zhao, Xiaoshuai Sun, Shaohui Liu
{"title":"显著性检测:一种自适应稀疏表示方法","authors":"Gaoxiang Zhang, F. Jiang, Debin Zhao, Xiaoshuai Sun, Shaohui Liu","doi":"10.1109/ICIG.2011.189","DOIUrl":null,"url":null,"abstract":"Saliency detection is essential to visual attention modelling and various computer vision tasks. Representation and measurement are two important issues for saliency models. Good representation and reasonable measurement are both critical issues in modelling visual saliency mechanism. For every input image, we obtain a self-adaptive dictionary that describes the image content effectively and image prior that forces sparsity in every location in the image using the K-SVD algorithm. For saliency measurement, background firing rate (BFR) is defined for each sparse features and it is followed by feature activation rate (FAR) computation to measure the bottom-up visual saliency.","PeriodicalId":277974,"journal":{"name":"2011 Sixth International Conference on Image and Graphics","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Saliency Detection: A Self-Adaption Sparse Representation Approach\",\"authors\":\"Gaoxiang Zhang, F. Jiang, Debin Zhao, Xiaoshuai Sun, Shaohui Liu\",\"doi\":\"10.1109/ICIG.2011.189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Saliency detection is essential to visual attention modelling and various computer vision tasks. Representation and measurement are two important issues for saliency models. Good representation and reasonable measurement are both critical issues in modelling visual saliency mechanism. For every input image, we obtain a self-adaptive dictionary that describes the image content effectively and image prior that forces sparsity in every location in the image using the K-SVD algorithm. For saliency measurement, background firing rate (BFR) is defined for each sparse features and it is followed by feature activation rate (FAR) computation to measure the bottom-up visual saliency.\",\"PeriodicalId\":277974,\"journal\":{\"name\":\"2011 Sixth International Conference on Image and Graphics\",\"volume\":\"142 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Sixth International Conference on Image and Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIG.2011.189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Sixth International Conference on Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIG.2011.189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

显著性检测对于视觉注意建模和各种计算机视觉任务至关重要。表示和测量是显著性模型的两个重要问题。良好的表征和合理的测量是视觉显著性机制建模的关键问题。对于每个输入图像,我们获得了一个自适应字典,它有效地描述了图像内容和图像先验,使用K-SVD算法在图像的每个位置强制稀疏性。对于显著性测量,首先定义每个稀疏特征的背景激发率(BFR),然后计算特征激活率(FAR)来测量自下而上的视觉显著性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Saliency Detection: A Self-Adaption Sparse Representation Approach
Saliency detection is essential to visual attention modelling and various computer vision tasks. Representation and measurement are two important issues for saliency models. Good representation and reasonable measurement are both critical issues in modelling visual saliency mechanism. For every input image, we obtain a self-adaptive dictionary that describes the image content effectively and image prior that forces sparsity in every location in the image using the K-SVD algorithm. For saliency measurement, background firing rate (BFR) is defined for each sparse features and it is followed by feature activation rate (FAR) computation to measure the bottom-up visual saliency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信