基于跨层异常的入侵检测系统

P. Satam
{"title":"基于跨层异常的入侵检测系统","authors":"P. Satam","doi":"10.1109/SASOW.2015.31","DOIUrl":null,"url":null,"abstract":"Since the start of the 21st century, computer networks have been through an exponential growth in terms of the network capacity, the number of the users and the type of tasks that are performed over the network. With the resent boom of mobile devices (e.g., Tablet computers, smart phones, smart devices, and wearable computing), the number of network users is bound to increase exponentially. But, most of the communications protocols, that span over the 7 layers of the OSI model, were designed in the late 1980's or 90's. Although most of these protocols have had subsequent updates over time, most of these protocols still remain largely unsecure and open to attacks. Hence it is critically important to secure these protocols across the 7 layers of the OSI model. As a part of my PhD research, I am working on a cross layer anomaly behavior detection system for various protocols. This system will be comprised of intrusion detection systems (IDS) for each of the protocols that are present in each layer. The behavior analysis of each protocol will be carried out in two phases. In the first phase (training), the features that accurately characterize the normal operations of the protocol are identified using data mining and statistical techniques and then use them to build a runtime model of protocol normal operations. In addition, some known attacks against the studied protocol are also studied to develop a partial attack model for the protocol. The anomaly behavior analysis modules of each layer are then fused to generate a highly accurate detection system with low false alarms. In the second phase, the cross-layer anomaly based IDS is used to detect attacks against any communication protocols. We have already developed anomaly behavior modules for TCP, UDP, IP, DNS and Wi-Fi protocols. Our experimental results show that our approach can detect attacks accurately and with very low false alarms.","PeriodicalId":384469,"journal":{"name":"2015 IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Cross Layer Anomaly Based Intrusion Detection System\",\"authors\":\"P. Satam\",\"doi\":\"10.1109/SASOW.2015.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the start of the 21st century, computer networks have been through an exponential growth in terms of the network capacity, the number of the users and the type of tasks that are performed over the network. With the resent boom of mobile devices (e.g., Tablet computers, smart phones, smart devices, and wearable computing), the number of network users is bound to increase exponentially. But, most of the communications protocols, that span over the 7 layers of the OSI model, were designed in the late 1980's or 90's. Although most of these protocols have had subsequent updates over time, most of these protocols still remain largely unsecure and open to attacks. Hence it is critically important to secure these protocols across the 7 layers of the OSI model. As a part of my PhD research, I am working on a cross layer anomaly behavior detection system for various protocols. This system will be comprised of intrusion detection systems (IDS) for each of the protocols that are present in each layer. The behavior analysis of each protocol will be carried out in two phases. In the first phase (training), the features that accurately characterize the normal operations of the protocol are identified using data mining and statistical techniques and then use them to build a runtime model of protocol normal operations. In addition, some known attacks against the studied protocol are also studied to develop a partial attack model for the protocol. The anomaly behavior analysis modules of each layer are then fused to generate a highly accurate detection system with low false alarms. In the second phase, the cross-layer anomaly based IDS is used to detect attacks against any communication protocols. We have already developed anomaly behavior modules for TCP, UDP, IP, DNS and Wi-Fi protocols. Our experimental results show that our approach can detect attacks accurately and with very low false alarms.\",\"PeriodicalId\":384469,\"journal\":{\"name\":\"2015 IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SASOW.2015.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASOW.2015.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

自21世纪初以来,计算机网络在网络容量、用户数量和通过网络执行的任务类型方面都经历了指数级增长。随着移动设备(如平板电脑、智能手机、智能设备、可穿戴计算)的蓬勃发展,网络用户数量必将呈指数级增长。但是,大多数跨越OSI模型7层的通信协议是在20世纪80年代末或90年代设计的。尽管随着时间的推移,这些协议中的大多数都进行了后续更新,但这些协议中的大多数仍然在很大程度上不安全,容易受到攻击。因此,在OSI模型的7层中保护这些协议是至关重要的。作为我博士研究的一部分,我正在研究各种协议的跨层异常行为检测系统。该系统将由针对每一层中存在的每个协议的入侵检测系统(IDS)组成。每个协议的行为分析将分两个阶段进行。在第一阶段(训练)中,使用数据挖掘和统计技术识别准确表征协议正常操作的特征,然后使用它们构建协议正常操作的运行时模型。此外,还研究了针对所研究协议的一些已知攻击,建立了协议的局部攻击模型。然后将各层的异常行为分析模块融合在一起,形成一个高精度、低误报的检测系统。在第二阶段,基于跨层异常的入侵检测用于检测针对任何通信协议的攻击。我们已经开发了TCP, UDP, IP, DNS和Wi-Fi协议的异常行为模块。实验结果表明,该方法可以准确地检测出攻击,并且误报率很低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross Layer Anomaly Based Intrusion Detection System
Since the start of the 21st century, computer networks have been through an exponential growth in terms of the network capacity, the number of the users and the type of tasks that are performed over the network. With the resent boom of mobile devices (e.g., Tablet computers, smart phones, smart devices, and wearable computing), the number of network users is bound to increase exponentially. But, most of the communications protocols, that span over the 7 layers of the OSI model, were designed in the late 1980's or 90's. Although most of these protocols have had subsequent updates over time, most of these protocols still remain largely unsecure and open to attacks. Hence it is critically important to secure these protocols across the 7 layers of the OSI model. As a part of my PhD research, I am working on a cross layer anomaly behavior detection system for various protocols. This system will be comprised of intrusion detection systems (IDS) for each of the protocols that are present in each layer. The behavior analysis of each protocol will be carried out in two phases. In the first phase (training), the features that accurately characterize the normal operations of the protocol are identified using data mining and statistical techniques and then use them to build a runtime model of protocol normal operations. In addition, some known attacks against the studied protocol are also studied to develop a partial attack model for the protocol. The anomaly behavior analysis modules of each layer are then fused to generate a highly accurate detection system with low false alarms. In the second phase, the cross-layer anomaly based IDS is used to detect attacks against any communication protocols. We have already developed anomaly behavior modules for TCP, UDP, IP, DNS and Wi-Fi protocols. Our experimental results show that our approach can detect attacks accurately and with very low false alarms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信