无线局域网超态nzim天线阵列的设计

A. Khairy, Islam Mohammed, M. Ahmed, M. M. Elsherbini
{"title":"无线局域网超态nzim天线阵列的设计","authors":"A. Khairy, Islam Mohammed, M. Ahmed, M. M. Elsherbini","doi":"10.38032/jea.2022.03.001","DOIUrl":null,"url":null,"abstract":"With the development of telecommunications and its applications, the design of compact antennas with high performance has become a great necessity. Among the important requirements is a high gain. In this article, a microstrip patch antenna using near zero-index metamaterial (NZIM) is proposed. This prototype is designed with the designing parameters of a rectangular microstrip patch antenna. The substrate material is FR-4. Simulation results show that this antenna operates at 5.8 GHz for a wireless local area network (WLAN). The proposed single antenna element achieves side-lobe suppression better than -13 dB. The 4×4 proposed antenna array is designed using 16 single elements and a T-shaped power divider to split power for each element. By covering a single-layer NZIM coating with a 4×4 array over a microstrip antenna, a gain enhancement of 14 dB is achieved in comparison with the single element. Over the operating band, the antenna prototype demonstrates steady radiation patterns. These characteristics are in good agreement with the simulations, rendering the antenna a good candidate for 5G applications. These antennas are designed, optimized, and simulated using CSTMWS2020.","PeriodicalId":292407,"journal":{"name":"Journal of Engineering Advancements","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Design of a Superstate NZIM-Antenna Array for WLAN Application\",\"authors\":\"A. Khairy, Islam Mohammed, M. Ahmed, M. M. Elsherbini\",\"doi\":\"10.38032/jea.2022.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of telecommunications and its applications, the design of compact antennas with high performance has become a great necessity. Among the important requirements is a high gain. In this article, a microstrip patch antenna using near zero-index metamaterial (NZIM) is proposed. This prototype is designed with the designing parameters of a rectangular microstrip patch antenna. The substrate material is FR-4. Simulation results show that this antenna operates at 5.8 GHz for a wireless local area network (WLAN). The proposed single antenna element achieves side-lobe suppression better than -13 dB. The 4×4 proposed antenna array is designed using 16 single elements and a T-shaped power divider to split power for each element. By covering a single-layer NZIM coating with a 4×4 array over a microstrip antenna, a gain enhancement of 14 dB is achieved in comparison with the single element. Over the operating band, the antenna prototype demonstrates steady radiation patterns. These characteristics are in good agreement with the simulations, rendering the antenna a good candidate for 5G applications. These antennas are designed, optimized, and simulated using CSTMWS2020.\",\"PeriodicalId\":292407,\"journal\":{\"name\":\"Journal of Engineering Advancements\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Advancements\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.38032/jea.2022.03.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Advancements","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.38032/jea.2022.03.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着通信技术及其应用的发展,设计高性能的小型天线已成为一种迫切需要。其中一个重要的要求是高增益。本文提出了一种采用近零折射率超材料(NZIM)的微带贴片天线。本原型采用矩形微带贴片天线的设计参数进行设计。基材为FR-4。仿真结果表明,该天线工作频率为5.8 GHz,适用于无线局域网。所提出的单天线元件的旁瓣抑制效果优于-13 dB。4×4提出的天线阵列设计使用16个单元件和一个t形功率分配器来分割每个元件的功率。通过将4×4阵列覆盖在微带天线上的单层NZIM涂层上,与单个元件相比,获得了14 dB的增益增强。在工作频带上,天线原型显示出稳定的辐射模式。这些特性与仿真结果很好地吻合,使该天线成为5G应用的良好候选者。使用CSTMWS2020对这些天线进行了设计、优化和仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Design of a Superstate NZIM-Antenna Array for WLAN Application
With the development of telecommunications and its applications, the design of compact antennas with high performance has become a great necessity. Among the important requirements is a high gain. In this article, a microstrip patch antenna using near zero-index metamaterial (NZIM) is proposed. This prototype is designed with the designing parameters of a rectangular microstrip patch antenna. The substrate material is FR-4. Simulation results show that this antenna operates at 5.8 GHz for a wireless local area network (WLAN). The proposed single antenna element achieves side-lobe suppression better than -13 dB. The 4×4 proposed antenna array is designed using 16 single elements and a T-shaped power divider to split power for each element. By covering a single-layer NZIM coating with a 4×4 array over a microstrip antenna, a gain enhancement of 14 dB is achieved in comparison with the single element. Over the operating band, the antenna prototype demonstrates steady radiation patterns. These characteristics are in good agreement with the simulations, rendering the antenna a good candidate for 5G applications. These antennas are designed, optimized, and simulated using CSTMWS2020.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信