VLSI内核神经算法

U. Ramacher
{"title":"VLSI内核神经算法","authors":"U. Ramacher","doi":"10.1109/CNNA.1990.207524","DOIUrl":null,"url":null,"abstract":"A unified description of neural algorithms by means of general objective functions is shown to be the key to economic design of software and hardware. The compute-intensive algorithmic strings present in the dynamical equations corresponding to an objective function are to be executed by dedicated VLSI circuits. Cellular neural networks are recovered as a special case, and a corresponding general learning rule is derived.<<ETX>>","PeriodicalId":142909,"journal":{"name":"IEEE International Workshop on Cellular Neural Networks and their Applications","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The VLSI kernel of neural algorithms\",\"authors\":\"U. Ramacher\",\"doi\":\"10.1109/CNNA.1990.207524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A unified description of neural algorithms by means of general objective functions is shown to be the key to economic design of software and hardware. The compute-intensive algorithmic strings present in the dynamical equations corresponding to an objective function are to be executed by dedicated VLSI circuits. Cellular neural networks are recovered as a special case, and a corresponding general learning rule is derived.<<ETX>>\",\"PeriodicalId\":142909,\"journal\":{\"name\":\"IEEE International Workshop on Cellular Neural Networks and their Applications\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Workshop on Cellular Neural Networks and their Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.1990.207524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Workshop on Cellular Neural Networks and their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1990.207524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

用通用目标函数对神经算法进行统一描述是实现软件和硬件经济设计的关键。与目标函数相对应的动态方程中存在的计算密集型算法串将由专用的VLSI电路执行。将细胞神经网络作为一种特例进行恢复,并推导出相应的通用学习规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The VLSI kernel of neural algorithms
A unified description of neural algorithms by means of general objective functions is shown to be the key to economic design of software and hardware. The compute-intensive algorithmic strings present in the dynamical equations corresponding to an objective function are to be executed by dedicated VLSI circuits. Cellular neural networks are recovered as a special case, and a corresponding general learning rule is derived.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信