多模型自适应迭代学习控制的二级自适应与优化

Ram Padmanabhan, Mahima Bhushan, Kaushal K. Hebbar, R. Makam, Koshy George
{"title":"多模型自适应迭代学习控制的二级自适应与优化","authors":"Ram Padmanabhan, Mahima Bhushan, Kaushal K. Hebbar, R. Makam, Koshy George","doi":"10.1109/ICC54714.2021.9703125","DOIUrl":null,"url":null,"abstract":"In this paper, we present a two-tier approach to achieve faster convergence in the presence of parameter uncertainties for discrete-time Iterative Learning Control (ILC) systems. The Multiple-Models with Second-Level Adaptation (MM-SLA) methodology is presented to minimize the time taken for tracking error to converge. The advantages of such an approach have not been exploited thus far in the context of adaptive ILC (AILC). We show here that AILC with MM-SLA leads to a significant reduction in the control energy besides faster convergence in the tracking error. Using simulation examples, we demonstrate the efficacy of the proposed strategies.","PeriodicalId":382373,"journal":{"name":"2021 Seventh Indian Control Conference (ICC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Second-Level Adaptation and Optimization for Multiple Model Adaptive Iterative Learning Control\",\"authors\":\"Ram Padmanabhan, Mahima Bhushan, Kaushal K. Hebbar, R. Makam, Koshy George\",\"doi\":\"10.1109/ICC54714.2021.9703125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a two-tier approach to achieve faster convergence in the presence of parameter uncertainties for discrete-time Iterative Learning Control (ILC) systems. The Multiple-Models with Second-Level Adaptation (MM-SLA) methodology is presented to minimize the time taken for tracking error to converge. The advantages of such an approach have not been exploited thus far in the context of adaptive ILC (AILC). We show here that AILC with MM-SLA leads to a significant reduction in the control energy besides faster convergence in the tracking error. Using simulation examples, we demonstrate the efficacy of the proposed strategies.\",\"PeriodicalId\":382373,\"journal\":{\"name\":\"2021 Seventh Indian Control Conference (ICC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Seventh Indian Control Conference (ICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICC54714.2021.9703125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Seventh Indian Control Conference (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC54714.2021.9703125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了一种两层方法来实现离散时间迭代学习控制(ILC)系统在参数不确定性存在下的更快收敛。为了最大限度地减少跟踪误差收敛所需的时间,提出了采用二级自适应方法的多模型。迄今为止,这种方法的优点尚未在自适应ILC (AILC)的背景下得到利用。我们在这里表明,采用MM-SLA的AILC可以显著降低控制能量,并加快跟踪误差的收敛速度。通过仿真实例,验证了所提策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Second-Level Adaptation and Optimization for Multiple Model Adaptive Iterative Learning Control
In this paper, we present a two-tier approach to achieve faster convergence in the presence of parameter uncertainties for discrete-time Iterative Learning Control (ILC) systems. The Multiple-Models with Second-Level Adaptation (MM-SLA) methodology is presented to minimize the time taken for tracking error to converge. The advantages of such an approach have not been exploited thus far in the context of adaptive ILC (AILC). We show here that AILC with MM-SLA leads to a significant reduction in the control energy besides faster convergence in the tracking error. Using simulation examples, we demonstrate the efficacy of the proposed strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信